NATIONAL EDUCATION POLICY-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges for Five Years of Higher Education

PROPOSED STRUCTURE OF UG & PG PHYSICS SYLLABUS

2021

Curriculum Design Committee, Uttarakhand

Sr.No.	Name & Designation	
1.	Prof. N.K. Joshi Vice-Chancellor, Kumaun University Nainital	Chairman
2.	Prof. O.P.S. Negi Vice-Chancellor, Uttarakhand Open University	Member
3.	Prof. P. P. Dhyani Vice-Chancellor, Sri Dev Suman Uttarakhand University	Member
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member

Expert Committee

S.N.	Name	Designation	Department	Affiliation
1.	Dr. Sanjay Pant	Professor	Physics Department	Kumaun University, Nainital
2.	Dr. P.S. Bisht	Professor	Physics Department	S.S.J. University, Almora
3.	Dr. Ramesh Chandra	Professor	Physics Department	Kumaun University, Nainital
4.	Dr. Bimal Pande	Associate Professor	Physics Department	Kumaun University, Nainital
5.	Dr. Y.K. Sharma	Professor	Physics Department	S.S.D. University, Rishikesh
6.	Dr. Nandan Singh	Assistant Professor	Physics Department	S.S.J. University, Almora
7.	Dr. Kamal Devlal	Assistant Professor	Physics Department	Uttarakhand Open University Haldwani

Syllabus Preparation Committee

S.N.	Name	Designation	Department	Affiliation
1.	Dr. Sanjay Pant	Professor & Head	Physics Department	Kumaun University, Nainital
2.	Dr. Shuchi Bisht	Professor	Physics Department	Kumaun University, Nainital
3.	Dr. Ramesh Chandra	Professor	Physics Department	Kumaun University,Nainital
4.	Dr. Alok Durgapal	Associate Professor	Physics Department	Kumaun University, Nainital
5.	Dr. Bimal Pande	Associate Professor	Physics Department	Kumaun University, Nainital
6.	Dr. Seema Pande	Associate Professor	Physics Department	Kumaun University, Nainital

			List of Papers in Six Semesters (B.Sc. Degree) Semester-wise Titles of the Papers in Physics		
Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
			Certificate Course in Basic Physics		
FIRST	I		Mechanics	Theory	(04)
YEAR			Mechanical Properties of Matter	Practical	(o2)
	II		Electricity and Magnetism	Theory	(04)
			Demonstrative Aspects of Electricity & Magnetism	Practical	(o2)
			Diploma in Applied Physics	1	
	III		Thermodynamics	Theory	(04)
SECOND YEAR			Demonstrative Aspects of Thermal Properties of Matter	Practical	(o2)
ILAK	IV		Geometrical Optics	Theory	(04)
			Demonstrative Aspects of Geometrical Optics	Practical	(o2)
			Bachelor of Science		•
	V		Physical Optics	Theory	(04)
THIRD			Demonstrative Aspects of Physical Optics	Practical	(o2)
YEAR			Basic Electronics	Theory	(04)
			Demonstrative Aspects of Basic Electronics	Practical	(o2)
	VI		Modern Physics	Theory	(04)
			Demonstrative Aspects of Modern Physics	Practical	(o2)
			Analog and Digital Electronics	Theory	(04)
Ì	 		Demonstrative Aspects of Analog & Digital Circuits	Practical	(o2)

Subject prerequisites:

- 1. For Semester I: 12th pass with subjects Physics, Chemistry & Mathematics
- 2. For Semester II: Passed Semester I with Physics
- 3. For Semester III: Passed Semester II with Certificate Course in Basic Physics
- 4. For Semester IV: Passed Semester III
- 5. For Semester V: Passed Semester IV with Diploma in Applied Physics
- 6. For Semester VI: Passed Semester V

Programme outcomes (POs):

Students having Degree in B.Sc. (with Physics) should have knowledge of different concepts and fundamentals of Physics and ability to apply this knowledge in various fields of academics and industry. They may pursue their future career in the field of academics, research and industry.

	,
PO 1	1. Competence in the methods and techniques of calculations using Mechanics.
	2. Students are expected to have hands-on experience to apply the theoretical knowledge to
	solve practical problems.
PO2	1. Students are expected to have deep understanding of electricity and magnetism.
	2. Student should be able to make basic electrical circuits and handle electrical instruments.
PO 3	1. Competence in the concepts of Thermodynamics.
	2. Students are expected to have hands on experience in Thermal Physics Experiments.
PO 4	1 Knowledge of different concepts in Geometrical Optics.
	2 Students are expected to have hands on experience of Experiments of Geometrical
	Optics
PO 5	1. Knowledge of basic concepts of optical instruments with their applications in technology
	2. Students are expected to have an insight in handling electronic instruments.
PO 6	1. Comprehensive knowledge of Analog & Digital Principles and Applications.
	2. Learn the integrated approach to analog electronic circuitry and digital electronics for
	R&D.
	•

Programme specific outcomes (PSOs): UG I Year / Certificate course in Basic Physics

After completing this certificate course, the student should have

- Acquired the basic knowledge of Mechanics, Electricity and Magnetism.
- Hands-on experience to apply the theoretical knowledge to solve practical problems of basic
 physical phenomena. He should be able to carry out experiments to understand the laws and
 concepts of Physics.
- An insight in understanding electrical circuits and in handling electrical instruments.

Programme specific outcomes (PSOs): UG II Year/ (Diploma in Applied Physics)

After completing this diploma course, the student should have

- Knowledge of different concepts in Thermodynamics, and Geometrical Optics.
- Knowledge of different aspects of Thermal Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.
- A deeper insight in Ray Optics to understand the Physics of many optical instruments which are widely
 used in research and Industry, Optoelectronics, IT and communication devices, and in industria
 instrumentation.
- Knowledge of basic concepts of optical instruments with their applications in technology.

	Programme specific outcomes (PSOs): UG III Year / Bachelor of Science				
After cor	npleting this degree course, the student should have:				
PSO 1	Knowledge of Mechanics and basic properties of matter. The course will empower him to apply his theoretical knowledge in various physical phenomena that occur in day to day life and he can use this scientific knowledge for the betterment of the society.				
PSO2	Understanding of basic concepts related to Electricity and Magnetism. He should be proficienct in designing and handling different electrical circuits				
PSO3	Expertise in different aspects of Thermal Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.				
PSO4	Proficient in the field of Optics which will increase his demand in research and industrial establishments engaged in activities involving optical instruments.				
PSO5	Basic knowledge in the field of Modern physics, which have utmost importance at both undergraduate and graduate level.				
PSO6	 Comprehensive knowledge of Analog & Digital Principles and Applications. Learn the integrated approach to analog electronic circuitry and digital electronics for R&D. 				

Year wise Structure of B.Sc. in Physics (CORE / ELECTIVE **COURSES & PROJECTS) Subject: Physics** Type of Credit Credit/ Credits Paper 4 Credits Elective Credits Research Paper 3 Year Sem Paper I Paper 2 Credit/hrs **Programme** /hrs hrs /hrs /hrs Paper /hrs **Project** Mechanical Mechanics Properties of (Theory) Ι 4/60 2/60 EL1 Matter (Practical) 4/60 Certificate (One Demonstrative from Electricity and 4/60 2/60 the list) Aspects of Magnetism (Theory) (06)Electricity& Magnetism (Practical) Demonstrative 2/60 Thermodynamics EL2 Ш Aspects of Thermal 4/60 (Theory) (One Properties of Matter (Practical) 4/60 Diploma from Demonstrative the list) Geometrical Optics Aspects of (06)IV (Theory) 4/60 2/60 Geometrical Optics (Practical) Demonstrative Demonstrativ Industrial Physical Optics Basic Electronics Aspects of e Aspects of 4/60 2/60 Training/Research 4/60 Qualifying (Theory) Basic 2/60 (Theory) Physical Project Electronics Optics (Practical) **Bachelor** (Practical) Science Demonstrative Demonstrativ Aspects of Modern Physics (Theory) Analog and Digital e Aspects of Analog & Digital Circuits Industrial Electronics (Theory) 2/60 Modern Training/Research VI 4/60 4/60 Qualifying

Physics (Practical)

(Practical)

Project

CERTIFICATE COURSE IN BASIC PHYSICS		
Programme: Certificate Course in Basic Physics	Year: I	Semester: I Paper-I
Subject: Physics		
Course Code: Course Title: Mechanics		

Course Outcomes

- 1. Understanding of Vector Algebra and Vector Calculus.
- 2. Understand the physical interpretation of gradient, divergence and curl.
- 3. Study of gravitational field and potential and understanding of Kepler's laws of Planetary motion.
- 4. Understanding of different frames of references and conservation laws.
- 5. Understand the dynamics of rigid body and concept of moment of inertia. Study of moment of inertia of different bodies and its applications.
- 6. Study the properties of matter, response of the classical systems to external forces and their elastic deformation and its applications.
- 7. Comprehend the dynamics of Fluid and concept of viscosity and surface tension along with its applications.

Credits: 04	Core Compulsory
Max. Marks: 100 External Exam: 75 Internal Assessment: 25	Min. Passing Marks: 33

Unit	Topic	No. of Lectures
Unit I	Vectors Algebra Vector algebra. Scalar and vector products, scalar and vector triple products, Derivative of a vector with respect to a parameter, Del operator, gradient, divergence and curl, Gauss divergence theorem, Stokes curl theorem and Green's theorem, Line, surface and volume integral of a vector function.	10
Unit II	Gravitation field and potential Gravitational field and potential, Gravitational potential energy, Gravitational field Intensity and potential due to a ring, a spherical shell, solid sphere and circular disc, gravitational self-energy, Inverse square law of forces, Kepler's laws of planetary motion.	10

Unit III	Conservation Laws		
	Frames of reference, Concept of inertial and Non-inertial frames of references,		
	Work energy theorem, Conservative and non-Conservative forces, Linear		
	restoring force, Gradient of potential, Conservation of energy for the particle;	15	
	Energy function, Concept of Centre of mass, Angular momentum and torque,		
	Laws of conservation of total energy, total linear momentum and total angular		
	momentum along with their examples.		
Unit IV	Dynamics of rigid body and Moment of Inertia		
	Translatory and Rotatory motion, Equation of motion for Rotating rigid body,		
	angular momentum vector and moment of inertia, Theorem of parallel and		
	perpendicular axes, Moment of inertia of a cylinder, rod, lamina, ring, disc,		
	spherical shell, solid sphere, kinetic energy of rotation, rolling along a slope,		
	Application to compound pendulum.		
Unit V	Properties of Matter		
	Basic concept, Elastic constants and their Interrelations, torsion of cylinder,		
	bending of beam, bending moment, Cantilever, shape of Girders/ rail tracks.	15	
	Viscosity, Stokes's law, Posieuille's formula, Equation of continuity,		
	Bernoulli's theorem, Surface tension and its molecular interpretation.		

1.R. Resnick and D. Hilliday: Physics Vol-I

2. Berkeley Physics Course: Mechanics Vol-I

3.R.P. Feynman, R.B.Lightan and M.Sand: The Feynman Lectures in Physics

4.D.S. Mathur: Mechanics

5.D.S. Mathur: Elements of Properties of Matter

6. Murray Spiegel, Seymour Lipschutz, Dennis Spellman, "Schaum's Outline Series: Vector Analysis", McGraw Hill, 2017.

7. J. C. Upadhaya: Mechanics, S. Chand

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as

follows:

Class Test/Assignment- (25 marks)

Course Prerequisites: Physics and Mathematics in 12th

CERTIFICATE COURSE IN BASIC PHYSICS Semester: I Practical Year: I Programme: Certificate Course in Basic Physics **Subject: Physics (Practical)** Course Code **Course Title:** Mechanical Properties of Matter (Practical) Course Outcomes: 1. Experimental physics has the most striking impact on the industry wherever the instruments are used to study and determine the mechanical properties. 2. Measurement precision and perfection is achieved through Lab Experiments. Credits: 02 Core Compulsory Max. Marks: 50 Min. Passing Marks: 17 **Internal (Record File): 15** External Practical Exam: 20 **External Viva Voce: 15** Total No. of Lectures-Tutorials-Practical (in hours per week): 0-0-4 Unit Topic No. of Lectures Lab Experiment List 1. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity. 2. To determine the Moment of Inertia of a Flywheel. 3. To determine g and velocity for a freely falling body using Digital Timing Technique. **60** 4. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method). 5. To determine the Young's Modulus of a Wire by Optical Lever Method. 6. To determine the Young's Modulus by bending of beam. 7. To determine the Modulus of Rigidity of a Wire by Maxwell's needle. To determine the elastic Constants of a wire by Searle's method. 8. To determine the value of g using Bar Pendulum. 9. To determine the value of g using Kater's Pendulum.

10. To determine Surface Tension.

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on attendance of student in Lab and presentation of practical in the record file. The marks shall be as follows

Record File (15 marks)

PREREQUISITE: Opted / Passed Semester I, Theory Paper-1 Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

BASIC PHYSICS		
sic Physics	Year: I	Semester: I Vocational/ Minor
Subject: Physics		•
ourse Title: Basic Instrumentat	ion Skills	
	Min. Passing	Marks: 33
		Subject: Physics Ourse Title: Basic Instrumentation Skills Vocational/M (Experiments

Total No. of Lectures-Tutorials-Practical (in hours per week): 3-0-0

Unit	Topic	No. of Lectures
Unit I	Basics of Measurement Instruments accuracy, precision, sensitivity, resolution, range, least count of different instruments etc. Errors in measurements and loading effects. Principle of Galvanometer, Voltmeter and Ammeter, Conversion of galvanometer into voltmeter and ammeter.	15
Unit II	Multimeter Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance. Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity.	10
Unit III	Digital Multimeter Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/frequency counter, time-base stability, accuracy and resolution.	117
Unit IV	Digital Instruments: Comparison of analog and digital instruments. Characteristics of a digital meter. Working principle of digital voltmeter.	10

Suggested Reading

- 1. B L Theraja: A text book in Electrical Technology
- 2. M G Say: Performance and design of AC machines
- 3. Venugopal: Digital Circuits and Systems
- 4. P. Vingron, Shimon: Logic Circuit Design
- 5. Subrata Ghoshal: Digital Electronics.
- 6. S. Salivahanan& N. S.Kumar: Electronic Devices and Circuits, , 3rd Edn

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- **3.** SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS		
Programme: Certificate Course in Basic Physics	Year: I	Semester: II Paper-I
Subject: Physics		
Course Code: Course Title: Electricity and Magnetism		

Course Outcomes:

- 1. Understanding of Electric Field and Potential. Evaluation of Electric Field and Potential for different types of charge distributions.
- 2. Study of Electric and Magnetic Fields in matter. Understand the concept of polarizability, Magnetization and Electric Displacement Vector.
- 3. Study of Steady and Varying electric currents.
- 4. Understanding of different aspects of alternating currents and its applications.
- 5. Understand the Magnetostatics, Lorentz Force and Energy stored in magnetic Field.
- 6. Comprehend the different aspects of Electromagnetic induction and its applications.

Credits: 04	Core Compulsory
Max. Marks: 100	Min. Passing Marks: 33
External Exam: 75	-
Internal Assessment: 25	

Unit	Topic	No. of Lectures
Unit I	Electric field and potential Coulomb law, Gauss' theory, its integral and differential forms, line integral of Electric field, Electric field and potential due to an arbitrary charge distribution. Electrostatic energy, energy stored in an Electric field. Electric field and potential due to long charged wire, Spherical shell, sphere, disc, dipole.	
Unit II	Electric and Magnetic fields in Matter Moments of charge distributions, Polar and non-polar molecule, polarization vector, electric displacement vector, three electric vectors, dielectric susceptibility and permittivity, polarizability, Clausius-Mossotti relation. Magnetization, magnetic susceptibility, diamagnetic, paramagnetic and ferromagnetic substances, Hysteresis and B-H curve, Langevin's theories of Diamagnetism and paramagnetism, Weiss theory of ferromagnetism.	15
Unit III	Electric Currents (Steady and Varying) Current density, Equation of Continuity, Ohm's law and electrical conductivity, LorentzDrude theory, Wiedmann-Frenz law, Kirchhoff's laws	10

	and their applications, Transient current, Growth and decay of D. C. in L - R and L - C circuits, charging and discharging of a capacitor through a resistance.	
Unit IV	Magnetostatics	
	Lorentz force, Bio-Savert's law, Ampere's law, Application of Biot-Savert law, magnetic field due steady current in a long straight wire, Interaction between two wires, field due a Helmholtz coil, solenoid and current loop, magnetic vector potential, permeability, Energy stored in Magnetic field.	_ ,
Unit V	Electromagnetic Induction and Alternating Current Faraday's laws of induction, Lenz's law, Electromotive force, Measurement of magnetic field, Eddy current, Mutual inductance, Self-inductance. Impedance, admittance and reactance, R-C, R-L and L-C circuits with alternating e.m.f. source, series and parallel L-C-R circuits, resonance and sharpness, Quality factor, Power in A. C. circuits, Choke coil.	10

- 1. Edward M. Purcell: Electricity and Magnetism
- 2. J.H. Fewkes&J. Yarwood: Electricity & Magnetism, Vol. I
- **3.** D C Tayal: Electricity and Magnetism ", Himalaya Publishing House Pvt. Ltd., 2019.
- **4.** D.J.Griffiths: Introduction to Electrodynamics.
- **5.** Lal and Ahmed : Electricity and Magnetism
- **6.** H. K. Malik and A.K. Singh "Engineering Physics", McGraw Hill Education (India) Private Limited, 2018.
- 7. Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 2", Pearson Education Limited, 2012.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment (25 marks)

Course Prerequisites: Passed semester I, theory paper-1

CERT	TIFICATE COURSE IN BASIC PHYSICS		
Programme	: Certificate Course in Basic Physics	Year: I	Semester: I Practical
	Subject: Physics (Practical)		
Course Co	de: Course Title: Demonstrative Aspects of Electricity & Magnet	ism (Practical)	
Course Out	comes:		
. Experime	ental physics has the most striking impact on the industry wherever	the instruments a	are used to
-	determine the electric and magnetic properties.		
	nent precision and perfection is achieved through Lab Experiments.		
Credits: 02		ore Compulsory	7
Max. Mark	s: 50 M	in. Passing Mar	·ks· 17
	ecord File): 15 actical Exam: 20	ini. I assing ivial	N3. 17
External Pr External Vi	actical Exam: 20 va Voce : 15		
	Lectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Topic		No. of
CIII	Topic		Lectures
	Lab Experiment List		
	1. Frequency of A.C. Mains.		
	2. Calibration of Voltmeter by potentiometer.		
	3. Calibration of ammeter by potentiometer.		
	4. Specific resistance determination.		
	4. Specific resistance determination.5. Conversion of a Galvanometer into a Voltmeter.		
	-		60
	5. Conversion of a Galvanometer into a Voltmeter.	ing circular coil.	60
	5. Conversion of a Galvanometer into a Voltmeter.6. Conversion of a Galvanometer into Ammeter.	ing circular coil.	60
	5. Conversion of a Galvanometer into a Voltmeter.6. Conversion of a Galvanometer into Ammeter.7. Variation of magnetic field along the axis of a current carry.	ing circular coil.	60
	 Conversion of a Galvanometer into a Voltmeter. Conversion of a Galvanometer into Ammeter. Variation of magnetic field along the axis of a current carry. Comparison of capacities by Ballistic Galvanometer. Determination of Ballistic Constant. Electrochemical equivalent. 	ing circular coil.	60
	 Conversion of a Galvanometer into a Voltmeter. Conversion of a Galvanometer into Ammeter. Variation of magnetic field along the axis of a current carry. Comparison of capacities by Ballistic Galvanometer. Determination of Ballistic Constant. Electrochemical equivalent. De Sauty's bridge- C1/ C2 	ing circular coil.	60
	 Conversion of a Galvanometer into a Voltmeter. Conversion of a Galvanometer into Ammeter. Variation of magnetic field along the axis of a current carry. Comparison of capacities by Ballistic Galvanometer. Determination of Ballistic Constant. Electrochemical equivalent. De Sauty's bridge- C1/ C2 R1/R2 by potentiometer. 	ing circular coil.	60
	 Conversion of a Galvanometer into a Voltmeter. Conversion of a Galvanometer into Ammeter. Variation of magnetic field along the axis of a current carry. Comparison of capacities by Ballistic Galvanometer. Determination of Ballistic Constant. Electrochemical equivalent. De Sauty's bridge- C1/ C2 R1/R2 by potentiometer. Study of R-C, L-C-R circuits. 	ing circular coil.	60
	 Conversion of a Galvanometer into a Voltmeter. Conversion of a Galvanometer into Ammeter. Variation of magnetic field along the axis of a current carry. Comparison of capacities by Ballistic Galvanometer. Determination of Ballistic Constant. Electrochemical equivalent. De Sauty's bridge- C1/ C2 R1/R2 by potentiometer. 		60

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester I

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

CERT	IFICATE COURSE IN BASIC PHYSICS	Š		
Programme	: Certificate Course in Basic Physics	Yea	r: I Seme	ester: II tional/Minor
	Subje	ect: Physics		
Course Co	de: Course Title: Electr	onics Instrumentat	ion skills	
Credits: 03		Voc	ational/Mi	10r
Max. Marks External Ex Internal Ass	am: 75	Mir	n. Passing M	Iarks: 33
Total No. of	Lectures-Tutorials-Practical (in hours pe	er week): 3-0-0		
Unit	Topic			No. of Lectures
Unit I	Electronic Voltmeter Principles of voltage, measurement (blocelectronic Voltmeter, Multimeter and their of AC millivoltmeters: Amplifier- rectifications are milli-voltmeter, specifications	r significance. AC milli er, and rectifier- amplif	voltmeter: 7	
Unit II	Cathode Ray Oscilloscope Block diagram of basic CRO. Construction focusing and acceleration (Explanation of discussion on screen phosphor, visual perbase operation, synchronization. Front parand their significance. Use of CRO for the frequency, time period. Special features oscilloscope, probes. Digital storage Oscilloscope, probes. Digital storage Oscilloscope.	ion of CRT, Electron g only— no mathematical to existence & chemical contant controls. Specificathe measurement of volumes of dual trace, introduced	treatment), Imposition. To tions of a Cotage (dc anaction to di	orief Cime CRO 15 d ac gital
Unit III	Signal and pulse Generators Block diagram, explanation and specificate and pulse generator. Brief idea for testing, wave analysis.			1 20
Unit IV Impedance Bridges Block diagram of bridge. Working principles of basic (balancing) RLC bridge. Specifications of RLC bridge. Block diagram and working principleas of a Qmeter. Digital LCR bridges.				

- 1. B L Theraja: Basic Electronics
- 2. M G Say: Performance and design of AC machines
- 3. Venugopal: Digital Circuits and Systems
- 4. P. Vingron, Shimon: Logic Circuit Design
- 5. Subrata Ghoshal: Digital Electronics
- 6. S. Salivahanan & N. S.Kumar: Electronic Devices and Circuits
- 7. V. K. Mehta: Basic Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Minor/Elective (04 Credit, One from the list El 1) Students having major in Physics will have to choose the elective/minor from sl. no. 1-4 only. Other students may have choice from sl. no. 1-6.

- 1. Statistical Physics
- 2. Numerical Methods
- 3. Computer Programming
- 4. Waves and Oscillations
- 5. Fundamental Mechanics
- 6. Basic Electricity and Magnetism

CERTIFICATE COURSE IN BASIC PHYSICS			
Programme: Cer	tificate Course in Basic Physics	Year: I	Semester: I/II
	Subject: Physics	1	1
Course Code:	Course Title: Statistical Physics		

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75 Internal Assessment: 25	Min. Passing Marks: 33
Internal Assessment: 23	

Unit	Topic	No. of Lectures
Unit I	Basic Concepts in Statistical Physics Basic postulates of Statistical Physics, Macro and Micro States, Phase Space, Density distribution in phase space, μ space representation and its division, Statistical average values, Condition of equilibrium, Stirling's Approximation, Entropy and Thermodynamic probability, Boltzmann entropy relation.	15
Unit II	Ensembles and Thermodynamic connections Ensembles, Micro -canonical, Canonical and Grand Canonical ensembles, Statistical definition of temperature and interpretation of second law of thermodynamic, Pressure, Entropy and Chemical potential. Entropy of mixing and Gibb's paradox, Partition function and Physical significances of various statistical quantities.	15
Unit III	Classical Statistics Maxwell-Boltzmann statistics and Distribution law, Energy distribution function, Maxwell Boltzmann law of velocity distribution (most probable velocity, average velocity, RMS velocity), Limitations of M-B statistics,	15

	Elementary idea of quantum statistics.	
Unit IV	Bose-Einstein and Fermi-Dirac Statistics	
	B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose	15
	Gas, Bose Einstein condensation, properties of liquid He (qualitative	
	description), Radiation as a photon gas and Thermodynamic functions of	
	photon gas, Bose derivation of Planck's law. Fermi-Dirac Distribution Law,	
	Thermodynamic functions of a Completely and strongly Degenerate Fermi	
	Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals,	
	Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit.	

- 1. B.B.Laud: Introductions to Statistical Mechanics
- 2. Bhattarjee J.K.: Statistical Physics (Allied Publishers)
- 3. F.Reif: Statistical Physics (Mc.Graw Hill)
- 4. Kamal Singh: Elements of Statistical Mechanics
- 5. K.Hung: Statistical Physics (Chapman and Hall/CRC)
- 6. J.P. Srivastava: Elements of Solid State Physics
- 7. K.E.Atkinson: Elementary Numerical Analysis
- 8. R.K. Pathria, B. Heinemann: Statistical Mechanics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS				
Programme: Certificate Course in Basic Physics Year: I Semester: I/II				
Subject: Physics				
Course Code:	Course Title: Numerical N	Tethods		

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75 Internal Assessment: 25	Min. Passing Marks: 33

Unit	Topic	No. of Lectures
Unit I	Ordinary Differential Equations	
	Brief review of ordinary differential equations, Exact equations, Equations	
	reducible to exact equations, Equations of the first order and higher degrees,	15
	Clairaut's equation. Applications of ODEs in concerned engineering branch.	13
	Linear differential equations with constant co-efficient, Complimentary	
	functions and particular integral, Method of variation of parameters, Equations	
	reducible to linear equations with constant co-efficient (Cauchy's and	
	Legendre's linear equations), Initial and Boundary value problems,	
	Simultaneous linear equations with constant co-efficient, Applications of	
	differential equations in concerned engineering branch.	
Unit II	Partial Differential Equations	
	Formulation of Partial Differential Equations (PDE), Solution of PDE, Linear	
	PDE of First Order (Lagrange's Linear Equation), Non-linear Equation of First	
	Order (Standard Forms), Charpit's Method, Homogeneous Linear Equations	15
	with Constant Coefficients, Non-homogeneous Linear Equations. Applications	
	of PDE: Method of separation of variables, Solution of one dimensional wave	
	and heat equation and two dimensional Laplace's equation.	
Unit III	Transforms Theory	
	Laplace Transform: Laplace Transforms of standard functions and their	
	properties, Inverse Laplace Transforms, General Properties of inverse Laplace	15
	transforms and Convolution Theorem, Laplace Transforms of periodic	
	functions, Dirac-delta Function, Heaviside's Unit Function, Solution of ODE	

and linear simultaneous differential equations using Laplace transforms. Fourier Transform: Fourier integral representation, Fourier sine, cosine and complex transform, Finite Fourier Transforms and their applications. Z – Transforms: Z–Transforms & its properties, inversion of Z – transform and applications of Z – transform	
Probability and Statistics Review of probability, Conditional probability and sampling theorems, Discrete and Continuous Probability Distribution, Probability Mass & Probability Density Functions, Distribution function, Discrete and Continuous probability distributions, Binomial, Poisson and Normal distributions.	

- 1. Advanced Engineering Mathematics by E. Kreyszig, John Wiley and Sons, NC, New York.
- 2. Differential Equations by S. L. Ross, John Wiley & Sons, New York.
- 3. An Introduction to Probability Theory & its Applications by W. Feller, Wiley.
- 4. Probability and Statistics for Engineers and Scientists by R.E. Walpole, S. L. Myers and K. Ye, Pearson.
- 5. Integral Transforms and Their Applications by Lokenath Dennath and Dambaru Bhatta, Chapman and Hall/CRC Press.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS					
Programme: Cer	Programme: Certificate Course in Basic Physics Year: I Semester: I/II				
Subject: Physics					
Course Code:	Course Title: Computer Program	nming			

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75 Internal Assessment: 25	Min. Passing Marks: 33

Unit	Topic	No. of Lectures
Unit I	Programming Fundamentals	
	Introduction to computer, block diagram and organization of computer, number	
	system and binary arithmetic, processing data, hardware, software, firmware,	15
	types of programming language -Machine language, Assembly level language,	10
	higher level language, source file, object file, translator-assembler, compiler,	
	interpreter. Evolution and classification of programming languages.	
Unit II	Programming Techniques	
	Steps in program development, algorithm, flowchart, pseudo code.	
	C Language: 'C' character set, literals, keywords, identifiers, data types and	
	size, variable declaration, expression, labels, statements, formatted input output	15
	statements, types of operators, data type conversion, mixed mode arithmetics,	
	control structures.	
Unit III	Data Structures	
	Storage classes, scope rules and visibility, arrays, pointers, dynamic storage	
	allocation, structures and unions, self-referential structures. Relationship	15
	between pointers and arrays, dynamic arrays: Introduction to dynamic data	
	structures linked lists, stack, and binary trees.	
Unit IV	Functions and File Handling	
	'C' functions, library functions, parameter passing, recursion, 'C' files,	15
	function for file handling, 'C' pre-processors and command line arguments,	
	macros and conditional compiler directives.	

- 1. C Programming Language by Briain W. Kenigham and Dennis Ritchie, Prentice Hall of India.
- 2. Programming with C by Byron Gottfried, Tata McGraw Hill.
- 3. The Complete Reference C by Herbert Schildt, Tata McGraw Hill.
- 4. Let us C by Yashwant Kanetkar, BPB Publication.
- 5. A Structured Programming Approach in C by B.A. Forouzan and R.F. Gilberg, Cengage Learning.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFIC	ATE COURSE IN BASIC PHYSICS		
Programme: Cert	tificate Course in Basic Physics	Year: I	Semester: I/II
	Subject: Physics		
Course Code:	Course Title: Fundamental Mechanics		

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75 Internal Assessment: 25	Min. Passing Marks: 33

Unit	Торіс	No. of Lectures
Unit I	Vectors Algebra and Ordinary Differential Equations	
	Vector algebra. Scalar and vector products. Derivatives of a vector with	15
	respect to a parameter. 1st order homogeneous differential equations. 2nd order	
	homogeneous differential equations with constant coefficients.	
Unit II	Translatory and Rotatary Motion and Conservation Laws	
	Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass, Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets, Angular velocity and angular momentum. Torque. Conservation of angular momentum.	15
Unit III	Gravitation	
	Newton's Law of Gravitation. Motion of a particle in a central force field	15
	(motion in a plane, angular momentum conservation). Kepler's Laws	
	(statement only). Satellite in circular orbit and applications. Geosynchronous	
	orbits. Basic idea of global positioning system (GPS). Weightlessness.	
	Physiological effects on astronauts.	
Unit IV	Elasticity	
	Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic	15
	constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic	
	constants - Work done in stretching and work done in twisting a wire -	
	Twisting couple on a cylinder - Determination of Rigidity modulus by static	
	torsion – Torsional pendulum-Determination of Rigidity modulus and moment	
	of inertia - q, η and σ by Searles method.	

- 1. Sears, Zemansky and Young: University Physics
- 2. Berkeley Physics Course: Volume-1 Mechanics
- 3. Resnick, Halliday & Walker Fundamentals of Physics
- 4. Basudeb Bhattacharya: Engineering Mechanics 2nd Edn
- 5. Ronald Lane Reese: University Physics
- 6. B.L. Flint and H.T. Worsnop : Advanced Practical Physics for

Students

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFIC	ATE COURSE IN BASIC PHYSICS	
Programme: Cer	tificate Course in Basic Physics	Year: I Semester: I/II
	Subject: Physics	
Course Code:	Course Title: Waves and Oscillations	

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 33
Internal Assessment: 25	111111111111111111111111111111111111111

Unit	Topic	No. of Lectures
Unit I	Analysis of wave motion	
	Characteristics, Differential equation of a wave motion, principle of	15
	superposition, Interference, Beats, stationary waves, Energy of stationary	
	waves, Wave velocity and group velocity, Fourier theorem, Fourier analysis of	
	square, triangular and saw-tooth waves. Energy density of plane acoustic	
	waves, Acoustic intensity, Measurement of acoustic intensity – the dB scale,	
	Characteristics and loudness of Musical sound, Acoustic impedance	
	Reflection and transmission of acoustic waves. Acoustics of buildings,	
TT *4 TT	reverberation time, Sabine's formula, Principle of sonar system.	
Unit II	Ultrasonics	1.5
	Classification of Sound waves, Ultrasonics, Quartz crystal and Piezo electric	15
	effect, Magnetostriction effect, Properties of Ultrasonic, Detection of ultrasonic	
	waves, Determination of velocity of ultrasonic waves in liquid (Acoustic	
	grating method) . Application of Ultrasonics.	
Unit III	Simple Harmonic Oscillations	1.5
	Periodic motion, SHM in mechanical systems, Energy of Simple harmonic	15
	oscillator, Superposition of SHM(s), Oscillations of two masses connected by a	
	spring, Non-linear (An-harmonic) oscillator and its applications to simple	
	pendulum. Applications of Simple harmonic motion in compound pendulum,	
	Torsional pendulum and LC circuit, Composition of two SHM(s) of different	
	frequency ratio, Lissajous' figures for equal frequencies ratio and 2:1	
	frequencies ratio	
Unit IV	Damped and Forced Harmonic Oscillations	1 =
	Damping force, Different cases for over, critical and under damping,	15
	Mechanical damped harmonic oscillators, Logarithmic decrement, Power	
	Dissipation, Relaxation time & Quality Factor.	

Forced oscillations, Mechanical driven harmonic oscillators, Transient and steady state behavior, Power absorption, phenomenon of resonance, amplitude resonance, velocity resonance, sharpness of resonance/Fidelity, Bandwidth and quality factor.

Suggested Reading

1. R. Resnick and D. Hilliday: Physics Vol-I

2. D.S. Mathur: Mechanics

3. Brijlal and Subrahmanyam: Waves and Oscillations

4. B.S.Semwal and M.S.Panwar: Wave Phenomena and Material

Science

5. Berkeley Physics Course: Mechanics Vol-I

6. R.K.Ghose: The mathematics of waves an Vibrations

7. D.P.Khandelwal: Oscillations and Waves

8. I.I.Pain: Physics of Vibration

9. A. P. French: Vibrations and Waves

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFIC	ATE COURSE IN BASIC PHYSICS	
Programme: Cer	tificate Course in Basic Physics	Year: I Semester: I/II
	Subject: Physics	
Course Code:	Course Title: Basic Electricity and Magnetism	n

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 33
Internal Assessment: 25	

Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0

Unit	Topic	No. of Lectures
Unit I	Electrostatics:	
	Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric	15
	field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere.	
Unit II	Magnetism	
	Magnetostatics: Biot-Savart's law and its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic	15
	field. Magnetic vector potential. Ampere's circuital law. Magnetic properties	
	of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para-and ferromagnetic materials.	
Unit III	Electromagnetic Induction and Alternating Current	
	Faraday's laws of electromagnetic induction, Lenz's law, self and mutual	15
	inductance, L of single coil, M of two coils. Energy stored in magnetic field.	
	Basic concepts of alternating currents.	
Unit IV	Maxwell's equations and Electromagnetic wave propagation	
	Equation of continuity, Displacement current, Maxwell's equations, Poynting	15
	vector, energy density in electromagnetic field, electromagnetic wave and its transverse nature.	

Suggested Reading

1. Edward M. Purcell: Electricity and Magnetism

2. J.H. Fewkes & J.Yarwood : Electricity & Magnetism, Vol. I

- **3.** D C Tayal : Electricity and Magnetism
- **4.** Ronald Lane Reese: University Physics
- **5.** D.J.Griffiths: Introduction to Electrodynamics, 3rd Edn.
- 6. B.L.Flint & H.T.Worsnop: Advanced Practical Physics for Students
- 7. M. Nelson and J. M. Ogborn: Advanced level Physics Practicals, 4th Ed
- 8. I.Prakash & Ramakrishna: A Text Book of Practical Physics, 11th Ed
- 9. S.Panigrahi & B.Mallick: Engineering Practical Physics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS Programme: Diploma in Applied Physics Subject: Physics Course Code: Course Title: Thermodynamics

Course Outcomes:

- 1. Recognize the difference between reversible and irreversible processes.
- 2. Understand First and Second Law of Thermodynamics and concept of Entropy.
- 3. Understand the physical significance of thermodynamical potentials.
- **4.** Comprehend the kinetic model of gases w.r.t. various gas laws.
- **5.** Study the implementations and limitations of fundamental radiation laws.

Credits: 04	Core Compulsory
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 33
Internal Assessment: 25	

Unit	Topic	No. of Lectures
Unit I	Basic concepts and First law of thermodynamics	
	Thermodynamic Systems, Thermal equilibrium and Zeroth law of	15
	thermodynamics, Equation of state and First law of thermodynamics, Discussion	
	of Heat and Work, Quasi-static Work; Reversible and Irreversible; Path	
	Dependence; Heat Capacities Adiabatic Processes, Vander Wall equation,	
	Distinction between Joule, Joule-Thompson and Adiabatic expansion of a gas.	
Unit II	Second law of Thermodynamics and Entropy	
	Insufficiency of first law of thermodynamics, Condition of Reversibility,	
	Carnot"s Engine and Carnot"s Cycle, Second law of thermodynamics, Carnot"s	10
	Theorem, Thermodynamic scale of temperature and its identity to perfect gas,	
	scale of temperature. Entropy, Mathematical formulation of Second law of	
	thermodynamics, Entropy of an ideal gas, T-S diagram and its applications,	
	Evaluation of Entropy changes in simple cases, Third law of thermodynamics.	
Unit III	Thermodynamic Relations	
	Thermodynamic potentials, Maxwell"s equation from thermodynamic potentials,	
	Some useful manipulations with partial derivatives (cooling in adiabatic	10
	processes and Adiabatic stretching of a wire), The Clausius-Clapeyron"s	
	equations, Triple point, Applications of Maxwell"sthermo dynamical relations.	

Unit IV	Transport of Heat	
	Modes of heat transfer via Conduction, Convection and Radiation, Fourier"s law,	
	One dimensional steady state conduction, Heat conduction through plane.	
	Thermal conductivity and its experimental detection, Newton's law of cooling,	15
	Dimensional analysis applied to forced and free convection. Black body	13
	radiation, Thermodynamics of radiations inside a hollow enclosure, Kirchoff"s	
	Laws, Derivation of Stefan Boltzmann Law, Wein"s displacement law, Black	
	body spectrum formulaearly attempts, Raleigh Jean"s Law, Quantum theory of	
	Radiation, Planck"s formula for black body spectrum, Wien"s law, Radiation as	
	a photon gas.	
Unit V	Kinetic Theory of Gases	
	Kinetic theory of gases, Microscopic description of an Ideal gas, Degrees of	
	freedom, Law of Equipartition of Energy, Distribution law of velocities, Most	10
	probable speed, Average speed and root mean square velocity of molecules,	
	Pressure exerted by a perfect gas, Kinetic Interpretation of Temperature	

- 1. S. Loknathan: Thermodynamics, Heat and Statistical Physics
- 2. Sharma and K.K. Sarkar: Thermodynamics, and Statistical Physics
- 3. Brijlal and Subrahmanyam: Heat and Thermodynamics
- 4. Garg, Bansal and Ghose: Thermal Physics, McGraw Hill, 2012.
- 5. M.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997.
- 6. Enrico Fermi, "Thermodynamics", Dover Publications, 1956.
- 7. MeghnadSaha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973
- 8. F.W. Sears, G.L. Salinger, "Thermodynamics, Kinetic theory & Statistical thermodynamics", Narosa Publishing House, 1998.
- 9. Singhal and Prakash: Heat and Thermodynamics, Pragati Prakashan

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment (25 marks)

Course Prerequisites: Passed Certificate course in Basic Physics.

DIPLOMA IN	N APPLIED PHYSICS		
Programme: <i>I</i>	Diploma in Applied Physics	Year: II	Semester: II Practical
	Subject: Physics (Practical)	1	
Course Code	Course Title: Demonstrative Aspects of Thermal Physics (Practical)		
Course Outco	mes:		
l. Experimenta	al physics has the most striking impact on the industry wherever the	e instrumer	its are used to
study and de	etermine the thermal properties.		
2. Measuremen	at precision and perfection is achieved through Lab Experiments.		
Credits: 02	Core Compulso		ory
Max. Marks: : Internal (Reco External Prac External Viva	ord File): 15 tical Exam: 20	. Passing N	Aarks:17
Fotal No. of L	ectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of Lectures
	Lab Experiment List		
	1. Thermal conductivity of a bad conductor by Lee's method.		
	2. Mechanical equivalent of heat by Searle's method.		
	3. Stefan's law		
	4. Platinum resistance thermometer.		
	5. Thermal conductivity of a good conductor by Searle's meth	od.	
	6. J by Callendar and Barnes method.		60
	7. Random throw- statistical method.		
	8. Newton's law of cooling, sp. heat of Kerosene oil.		
	9. Constant volume thermometer.		
	10. Variation of thermo-emf across two junctions of a thermoc	ouple with	

Temperature

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Certificate course in Basic Physics

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	DIPLOMA	IN APPLIED PHYSICS		
		emester: III ocational/Minor		
		Subject: Physics		
Course Code	Course Title:	Number System and Boolean	Algebr	a
Credits: 03		Voca	ational/	Minor
Max. Marks: External Exar Internal Asses			g Marks: 33	
	ectures-Tutorials-Practical (in ho	urs per week): 3-0-0		
Unit	Topic			No. of Lectures
Unit I	Number systems, Decimal, Binary	y, Octal and Hexadecimal numb	er syste	ems,
	Rinary to decimal conversion [Jouble-Dadd method Decimal	l to Ri	nary 10

	Binary to decimal conversion, Double-Dadd method, Decimal to Binary conversion-shifting the place point Binary operations,	
Unit II	Binary addition, Binary subtraction. Complement of a number (1"s complement and 2"s complement), Binary division, Representation of a Binary number as electrical signals.	
	Octal number system, Conversion of Binary to octal and octal to binary, Advantages of octal number system, Hexadecimal number system, Binary to hexadecimal and vice-versa (Inter-conversion), BCD, GREY, EXCESS-3 codes	
Unit IV	Boolean algebra, Features of Boolean algebra, Laws of Boolean algebra, Equivalent switching circuit, Demorgan's theorems and Duals.	10

Books Recommended:

- 1. M.K. Baagde, S.P.Singh and Kamal Singh ,Elements of Electronics ,(S. Chand and Co.)
- 2. B.L.Thereza, Basic Electronics, (S. Chand and Co.)
- 3. V.K.Mehta, Elements of Electronics, (S. Chand and Co.)
- 4. Brophy, Communication Electronics (McGraw-Hill Education)
- 5. R Boylested, Electronic Devices & Circuit theory (PHI)

Suggested Online Link: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS Programme: Diploma in Applied Physics Subject: Physics Course Code: Course Title: Geometrical Optics

Course Outcomes:

- 1. Study of Fermat's Principle of Extremum Path and understand fundamental physics behind reflection and refraction of light.
- 2. Understand the theory of image formation by an optical system.
- 3. Study of different types of optical Aberrations and techniques for their reduction.
- 4. Study of different types of optical instruments used in industry and research

Credits: 04	Core Compulsory
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 33
Internal Assessment: 25	

Unit	Торіс	No. of Lectures
Unit I	Fermat's Principle and refraction (Spherical Surfaces) Fermat's principle of	
	extremum path and its application to deduce laws of reflection and refraction,	
	Refraction at concave surface, Principal foci, Lateral and longitudinal	15
	magnifications, Aplanatic points of spherical surface.	
Unit II	Image Theory for Lens Systems Gauss's general theory of image formation,	15
	Coaxial symmetrical system, Cardinal points of an optical system, General	15
	relationships, Thick and Thin lens, lens combinations, Newton's formula,	
	Coaxial lens system, Lagrange's equation of magnification, Refraction through a	
	thick lens. Matrix theory of image formation.	
Unit III	Optical Aberrations and dispersion Aberrations in images, Spherical aberration,	15
	Chromatic aberration, Condition of achromatism, Achromatic combination of	15
	lenses in contact and separated lenses, Monochromatic aberrations and their	
	reduction, Spherical mirrors and Schmidt corrector plates, Theory of dispersion.	
Unit IV	Associated Optical Instruments Nodal Slide, Eyepiece, Ramsden's, Huygen's	1.5
	and Gaussian eyepieces, their comparison. Types of telescopes, Astronomical	15
	Reflecting and refracting telescope, Microscopes: principle and types,	
	Spectrometer and its uses, Oil immersion objectives meniscus lens.	

- 1. D.P. Khandelwaland: Optics and Atomic Physics
- 2. Jenkins and White: Fundamentals of Optics
- 3. A.K. Ghatak: Physical Optics
- 4. Brijlal and Subrahmanyam : Optics
- 5. K.D. Moltev: Optics
- 6. B. K. Mathur: Optics
- 7. B. D. Guenther: Modern Optics, Oxford Press
- 8. E. Hecht: Optics, Pearson.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested equivalent online courses:

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Assignment (05 marks)

Class Test/Assignment (25 marks)

Course Prerequisites: Passed Certificate course in Basic Physics and Passed Semester III.

rogramme	: Diploma in Applied Physics	Year: II	Semester: IV Practical
	Subject: Physics (Practical)	1	
	Course Title: Demonstrative Aspects of Geometrical C (Practical)	Optics	
ourse Outo	comes:		
study and	ental physics has the most striking impact on the industry determine the optical properties.		ments are used to
. Measurem	nent precision and perfection is achieved through Lab Exp	periments.	
Credits: 02		Core Comp	oulsory
Iax. Marks nternal (Re external Pra external Viv	s: 50 ecord File): 15 actical Exam: 20 va Voce : 15	Min. Passin	g Marks:17
otal No. of	Lectures-Tutorials-Practical (in hours per week): 0-0)-4	
Unit	Торіс		No. of Lecture
	Lab Experiment	List	
	Nodal slide assembly, Location of cardinal points o	f lens system.	
	2. Newton's formula.		
	3. Dispersive power of prism.		
	4. Resolving power of a telescope.		
	5. To determine the Resolving Power of a Prism.		
	6. To verify the Cauchy's dispersion formula.		60
	7. To find the thickness of the wire using optical bench.		
	8 To determine the thickness of mica-sheet by using Binris		

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash, Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Certificate course in Basic Physics and Semester III.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	DIPLOMA IN APPLIE	D PHYSICS	
Programme: <i>Di</i>	ploma in Applied Physics		Semester: IV Vocational/Minor
	Subject: Pl	iysics	
CourseCode:	Course Title: Dig	ital Electronics	
Credits: 03		Vocational	/Minor
Max. Marks: 10 External Exam: Internal Assessi	75	Min. Passi	ng Marks: 33
		<u>'</u>	

Total No. of Lectures-Tutorials-Practical (in hours per week): 3-0-0

Unit	Topic	No. of Lectures
Unit I	Positive and Negative logic, Two input OR gate, Diode OR gate and transistor OR gate, Three input OR gate and its truth table, Exclusive OR gates, The AND gate, Diode AND gate and transistor AND gate, The NOT gate,	
Unit II	Bubbled gates, The NOR gate, The NAND gate, NAND and NOR as universal gates, The XNOR gate. Adders and subtractors, Half Adders, Full adders	10
Unit III	Logic Families, Saturated and Non- saturated Logic circuits, Characteristics of Logic Families, RTL Circuits, DTL Circuits, TTL Circuits.	10
Unit IV	Basic idea of Flip Flop, RS Latch, D-type flip flop and T-type Flip Flop . JK Flip Flop and Master Slave Flip Flop.	15

Suggested Reading

Books Recommended:

- 1. M.K. Baagde, S.P.Singh and Kamal Singh, Elements of Electronics, (S. Chand and Co.)
- 2. 2. B.L. Thereza, Basic Electronics, (S. Chand and Co.)
- 3. V.K.Mehta, Elements of Electronics, (S. Chand and Co.)
- 4. 4. Brophy, Communication Electronics (McGraw-Hill Education)
- 5. S. R Boylested, Electronic Devices & Circuit theory (PHI)

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

Minor/Elective (04 Credit, One from the list El2)

Students having major in Physics will have to choose the elective/minor from sl. no. 1-5. Other students may have choice from sl. no. 1-6.

- 1. Solid State Physics
- 2. Elements of Modern Physics
- 3. Electromagnetic Theory
- 4. Optoelectronic Devices
- 5. Opto-Electronics and Laser Instrumentation
- 6. Classical Dynamics

Credits: 04

DIPLOMA	IN APPLIED PHYSICS				
Programme: Dip	Programme: Diploma in Applied Physics Year: II Semester: III/IV				
	Subject: Physics		L		
Course Code:	Course Title: Solid State Physics				

Minor/Elective

Max. Marks External Exa Internal Asso Total No. of	im: 75	ks: 33
Unit	Торіс	No. of Lectures
Unit I	Crystal Structure Single crystals and polycrystalline forms, Lattice, Basis and crystal structure, Translational symmetry and basis vectors, Unit cell (primitive and non-primitive), Two dimensional point groups and Bravais lattices, Miller indices, SC, BCC and Sodium Chloride structures, closed packed structures (FCC and HCP). Reciprocal lattice, X-rays diffraction, Bragg's law, Laue and powder methods of X-rays diffraction.	
Unit II	Lattice Dynamics Lattice vibrations, Monoatomic lattice, Phonons, Free electron theory of metals, limitations of Lorentz Drude theory, Somerfield theory, Specific heat and paramagnetism of free electrons, Dulong and Petit's law, Departure of the law at low temperatures, Einstein's theory of specific heat and its limitations, Debye's theory of specific heat of solids.	10

Unit III	Band theory of Solids	
	Motion of an electron in periodic potential (one dimensional), Results of Kronig-	
	Penny model, Distinction between conductors, Semiconductors and Insulators,	
	Intrinsic and Extrinsic semiconductors, Effective mass of electron,	
	Concept of holes.	
Unit IV	Magnetic and Dielectric Properties of Matter	
	Dia-, Para-, Ferri- and Ferromagnetic Materials, Classical Langevin Theory of	
	dia- and Paramagnetic Domains. Quantum Mechanical Treatment of	
	Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and	
	Ferromagnetic Domains. Hysteresis and Energy Loss,. Electric Susceptibility.	15
	Polarizability. Clausius Mosotti Equation. Classical Theory of Electric	15
	Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmein	
	relations. Langevin-Debye equation. Complex Dielectric Constant. Optical	
	Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons, TO	
	modes.	

1. Dekker: Solid State Physics

2. C.kittel: Introduction to Solid State Physics

3. S.O.Pillai : Solid State Physics

4. Saxena, Gupta and Saxena: Fundamental of Solid State Physics

5. B.B.Laud: Introductions to Statistical

8. Leonid V. Azaroff: Introduction to Solids

9. N.W. Ashcroft and N.D. Mermin: Solid State Physics

10. H. Ibach and H. Luth: Solid-state Physics

6. B.L.Flint & H.T.Worsnop: Advanced Practical Physics for Students

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

DIPLOMA	IN APPLIED PHYSICS		
Programme: <i>Dip</i> o	loma in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics		
Course Code:	Course Title: Elements of Modern Phy	sics	

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 33
Internal Assessment: 25	

Unit	Topic	No. of Lectures
Unit I	Quantum Mechanics and Bohr Atom Model	
	Planck's quantum, Planck's constant and light as a collection of photons;	
	Photoelectric effect and Compton scattering. De Broglie wavelength and	
	matter waves; Davisson-Germer experiment. Rutherford model, Bohr's	15
	model, quantization rule and atomic stability; calculation of energy levels	
	for hydrogen like atoms and their spectra.	
Unit II	Quantum Systems and Heisenberg Uncertainty Principle	
	Position measurement; Wave-particle duality, Heisenberg uncertainty	
	principle- impossibility of a particle following a trajectory; Estimating	15
	minimum energy of a confined particle using uncertainty principle;	13
	Energy-time uncertainty principle.	
Unit III	Matter Waves and Schrödinger Equation	
	Two slit interference experiment with photons, atoms & particles; linear	
	superposition principle as a consequence; Matter waves and wave	
	amplitude; Schrodinger equation for non-relativistic particles; Momentum	15
	and Energy operators; stationary states; physical interpretation of	
	wavefunction, probabilities and normalization; Probability and probability	
	current densities in one dimension.	
Unit IV	Motion in a Potential Well	
	One dimensional infinitely rigid box- energy eigenvalues and	15
	eigenfunctions, normalization; Quantum dot as an example; Quantum	
	mechanical tunnelling in one dimension - across a step potential and	
	across a rectangular potential barrier.	

- 1. Arthur Beiser: Concepts of Modern Physics
- 2. J.R. Taylor, C.D. Zafiratos: Modern Physics
- 3. Thomas A. Moore: Six Ideas that Shaped Physics: Particle Behave like Waves
- 4. Berkeley Physics Course: Vol.4 (Quantum Physics)
- 5. Serway, Moses, and Moyer: Modern Physics
- 6. G. Kaur and G.R. Pickrell: Modern Physics
- 7. B.L. Flint and H.T. Worsnop: Advanced Practical Physics for Students
- 8. Michael Nelson and Jon M. Ogborn: Advanced level Physics Practicals, , 4th Edition

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

DIPLOMA	APPLIED PHYSICS				
Programme: Diploma in Applied Physics Year: II Semester: III/IV					
Subject: Physics					
Course Code: Course Title: Electromagnetic Theory					

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 25
Internal Assessment: 25	

Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0

Unit	Торіс	No. of Lectures
Unit I	Maxwell's Equations	1.5
	Review of electrostatic and electromagnetic equations, their differential and	15
	integral forms, Maxwell's equations. Displacement Current. Wave	
	Equations. Plane Waves in Dielectric Media. Poynting Theorem and	
	Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept	
	of Electromagnetic Field Energy Density.	
Unit II	EM Wave Propagation in Unbounded Media	15
	Plane EM waves through vacuum and isotropic dielectric medium,	
	transverse nature of plane EM waves, refractive index and dielectric	
	constant, wave impedance. Propagation through conducting media,	
	relaxation time, skin depth.	
Unit III	EM Wave in Bounded Media	15
	Boundary conditions at a plane interface between two media. Reflection &	
	Refraction of plane waves at plane interface between two dielectric media-	
	Laws of Reflection and Refraction, Fresnel's Formulae, Brewster's law.	
	Total internal reflection,	
Unit IV	Polarization of Electromagnetic Waves	15
	Description of Linear, Circular and Elliptical Polarization. Uniaxial and	
	Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction.	
	Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary	
	refractive indices.	

Suggested Reading

- 1. D.J. Griffiths: Introduction to Electrodynamics
- 2. M.N.O. Sadiku: Elements of Electromagnetics
- **3.** T.L. Chow: Introduction to Electromagnetic Theory
- **4.** M.A.W. Miah: Fundamentals of Electromagnetics

- **5.** R.S. Kshetrimayun : Electromagnetic field Theory
- **6.** Willian H. Hayt: Engineering Electromagnetic
- 7. J.A. Edminster: Electromagnetics, Schaum Series, 2006
- **8.** B.L. Flint and H.T. Worsnop: Advanced Practical Physics for Students
- 9. Michael Nelson and J. M. Ogborn: Advanced level Physics Practicals

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

DIPLOMA	IN APPLIED PHYSICS		
Programme: Dip	loma in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics		
Course Code:	Course Title: Optoelectronic Devices		

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75 Internal Assessment: 25	Min. Passing Marks: 33

Unit	Торіс	No. of Lectures
Unit I	Properties of semiconductors Electron and photon distribution: density of states, effective mass and band structure, effect of temperature and pressure on band gap, recombination processes. Basics of semiconductor optics: Dual nature of light, band structure of various semiconductors, light absorption and emission, photoluminescence electroluminescence, radioactive and non-radiative recombination, wave trains.	
Unit II	Semiconductor light-emitting diodes and Semiconductor lasers Structure and types of LEDs and their characteristics, guided waves and optical modes, optical gain, confinement factor, internal and external efficiency, semiconductor heterojunctions, double hetero structure LEDs. Semiconductor lasers: Spontaneous and stimulated emission, principles of a laser diode, threshold current, effect of temperature, design of an edge-emitting diode, emission spectrum of a laser diode, quantum wells, quantum-well laser diodes.	
Unit III	Semiconductor light modulators Modulating light (direct modulation of laser diodes, electro-optic modulation, acousto-optic modulation), isolating light (magneto-optic isolators), inducing optical nonlinearity (frequency conversion, switching)	15

Unit IV	Semiconductor light detectors	
	I-V characteristics of a p-n diode under illumination, photovoltaic and photoconductive modes, load line, photocells and photodiodes, pi-n photodiodes, responsivity, noise and sensitivity, photodiode materials, electric circuits with photodiodes, solar cells.	

- 1. Semiconductor Optoelectronics: Physics and Technology, Jasprit Singh, McGraw Hill Companies, ISBN 0070576378
- 2. Optoelectronics, E. Rosencher and B. Vinter, Cambridge Univ. Press, ISBN 052177813.
- 3. Photonic Devices, J. Liu, Cambridge Univ. Press, ISBN 0521551951.
- 4. Semiconductor Optoelectronic Devices 2nd Edition", P. Bhattacharya, Prentice Hall, ISBN 0134956567.
- 5. Physics of Semiconductor Devices, by S. M. Size (2nd Edition, Wiley, New York, 1981)

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

DIPLOMA	IN APPLIED PHYSICS		
Programme: Dip	loma in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics		
Course Code:	Course Title: Opto-Electronics and Laser Instrum	entation	

Credits: 04	Minor/Elective
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 33
Internal Assessment: 25	

Unit	Торіс	No. of Lectures
Unit I	Introduction Characteristics of optical radiation, luminescence, irradiance – Optical Sources – Photo Detectors – Opto-couplers and their application in analog and digital devices. Optical Fiber Fundamentals – modes, types of optical fibers – fiber coupling – Fiber optic sensors for common industrial parameters – V, I, pressure, temperature – IR sources and detectors – fiber optic gyroscope.	15
Unit II	Characteristics of LASERS Einstein's equations – population inversion two, three and four level system. Laser rate equation, properties – modes – Resonator configurations – Q switching and mode locking, cavity dumping, single frequency operation – Types of Lasers. Applications – Lasers for measurement of distance and length, velocity, acceleration, atmospheric effects, pollutants.	15
Unit III	Applications Lasers for measurement of distance and length, velocity, acceleration, atmospheric effects, pollutants. Material processing applications – Laser heating, melting, scribing, splicing, welding and trimming of materials, removal and vaporization.	15
Unit IV	Holographic Interferometry and Applications Holography for non-destructive testing – medical applications – lasers and tissue interaction -surgery – dermatology.	15

- 1. Wilson and Hawkes, "Opto Electronics-An Introduction", Third Edition, Pearson Education, 1998.
- 2. John Ready, "Industrial Applications of Lasers", Second Edition, Academic Press, 1997.
- 3. Bhattacharya P, "Semiconductor Optoelectronics", Second Edition, Pearson Education, 1998.
- 4. Djafar K. Mynbaev, Lowell L. Scheiner, "Fiber-Optic Communications Technology", First Edition, Prentice Hall of India Pvt. Limited, 2000.
- 5. R. P. Khare, "Fiber Optics and Optoelectronics", Oxford Press, 2004.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- **3.** Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

DIPLOMA	IN APPLIED PHYSICS		
Programme: <i>Dip</i>	loma in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics		
Course Code:	Course Title: Classical Dynam	ics	

Max. Marks: 100 External Exam: 75 Internal Assessment:25	arks: 25
Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit Topic	No. of Lectures
Unit I Classical Mechanics of Point Particles Review of Newtonian Mechanics; Generalized coordinates and velocities, Hamilton's principle, Lagrangian and the Euler-Lagrange equations, one- dimensional Simple Harmonic Oscillations and falling body in uniform	10

equation, qualitative description of turbulence, Reynolds number, Basic physics of fluids: Definition of a fluid- shear stress; Fluid, properties-viscosity, thermal conductivity, mass diffusivity, other fluid properties and equation of state; Flow visualization - streamlines, pathlines, Streaklines

Suggested Reading

1. H. Goldstein: Classical Mechanics

2. N.C. Rana & P. S. Jog: Classical Mechanics

3. Landau and Lifshitz: Mechanics

4. Sommerfeld: Mechanics

5. Whittaker: Analytical Dynamics of Particles and Rigid Bodies

6. Raychaudhuri: Classical Mechanics

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment (25 marks)

DEGREE IN SCIENCE			
Programme: Degree in Science		Year: III	Semester: V Paper-I
	Subject: Physics		· -
Course Code: Course Title: Physical Optics			

Course Outcomes:

- 1. Study of Interference of light. Interference by division of wavefront and division of amplitude.
- 2. Understanding Diffraction of Light and concept of Zone Plate.
- 3. Understand the polarization of light..
- 4. Study of different types of associated optical instruments based on interference and diffraction of light which are widely used in industry and research.

Credits: 04	Core Compulsory
Max. Marks: 100	Min. Passing Marks: 33
External Exam: 75	
Internal assessment: 25	

Unit	Торіс	No. of Lectures
Unit I	Interference The principle of superposition, Two slit interference, coherence,	
	Division of wave front and amplitude, Optical path retardations lateral shift of	15
	fringes, Fresnel biprism, Interference with multiple reflection, Thin films,	
	Application for precision measurements, Haidinger fringes, Fringes of equal	
	thickness and equal inclination.	
Unit II	Diffraction Fresnel's and Fraunhofer diffraction: Diffraction of single slit,	15
	Zone plates, intensity distribution, Resolution of image, Rayleigh criterion,	
	Resolving power of telescopes and microscopes, Diffraction due to 2-slits and	
	N-slits, Diffraction grating, Resolving power of grating and comparison with	
	resolving powers of prisms.	
Unit III	Polarization Plane polarized, Circular polarized and elliptically polarized light,	15
	Malus law, Brewster's law, Double reflection and uniaxial crystals,	
	Application of bi-refringence, Dichroism, Optical rotation, Rotation of plane of	
	polarization, Optical rotation in liquids and crystals, Polarimeter.	
Unit IV	Associated Optical Instruments Michelson intereferometer and its application	15
	for precise measurement of wavelength, Wavelength difference and width of	
	spectral lines, Twyman-Green interferometer, Tolansky fringes, Fabry-Perot	
	interferometer and Etalon.	

1. D.P. Khandelwaland: Optics and Atomic Physics

2. Jenkins and White: Fundamentals of Optics

3. A.K. Ghatak: Physical Optics

4. Brijlal and Subrahmanyam : Optics

5. K.D. Moltev : Optics6. B. K. Mathur : Optics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test /Assignment (25 marks)

Course Prerequisites: Passed Semester IV.

DEGREE IN	SCINCE			
Programme:	Degree in Science		Year: III	Semester: Practical
(Practical)	Subject: Physics			I
`				
Course Code	Course Title: Demonstrative Aspects of Physical Optics (Practical)			
Course Outco				
study and o	tal physics has the most striking impact on the industry when determine the optical properties. In precision and perfection is achieved through Lab Experimental		instrumen	ts are used to
Credits: 02		Core	Compulso	ory
Max. Marks: 50 Internal (Record File): 15 External Practical Exam: 20 External Viva Voce : 15		larks: 17		
Total No. of 1	Lectures-Tutorials-Practical (in hours per week): 0-0-4			
Unit	Topic			No. of Lecture
	Lab Experiment List			
	1. Biprism- determination of λ.			
	2. Newton's ring experiment- Determination of λ.			
	3. Determination of λ by a transmission grating.			
	4. Zone-plate experiment study of different orders.			
	5. Malus Law			60
	6. Spectrometer: Refractive index of the material of a prism	n using		
	sodium light			
	7. Spectrometer: Dispersive power of the material of a prisi	m using		
	mercury light			
	8. Polarimeter: Specific rotation of sugar solution.			

Suggested Readings:
1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual

Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Year: III	Semester: V Paper-II
1	1
	Year: III

Course Outcomes:

- 1. Study of different Network Theorems for simplifying complicated electronics circuits.
- 2. Study of Regulated Power Supply. Understand different types of Rectifiers, Filters and Voltage Regulator.
- 3. Study of different types of special diodes and their applications
- 4. Study of Transistors and their applications in different types of Amplifiers.

Credits: 04	Core Compulsory
Max. Marks: 100 External Exam: 75 Internal Exam: 25	Min. Passing Marks: 33

Unit	Торіс	No. of Lectures
Unit I	Network Theorems	10
	Superposition Theorem, Constant voltage source and constant current source,	
	Conversion of voltage source into current source, Thevenin's Theorem and	
	procedure for finding thevenin equivalent circuit, Norton"s Theorem and	
	procedure for finding Norton equivalent circuit, Maximum power transfer	
	theorem, Applications of Network Theorems.	
Unit II	Power Supplies	15
	Semiconductor diode: P-N Junction diode, Diode circuits with DC and AC	
	Voltage sources, Diode as a rectifier: Half and Full wave rectifiers, Bridge	
	rectifiers, Peak inverse voltage, Efficiency, Ripple factor, Filters: Low pass and	
	High pass filters, Band pass and Band stop filters, L and π – filters (Series	
	inductor, Shunt capacitor, LC, CLC filters), Zener diode, its characteristics,	
	Voltage regulation.	
Unit III	Special Diodes	10
	Special Diodes Tunneling effect, Tunnel diode, Varactor diode, Point contact diode,	
	V-I characteristic of these diodes, Optoelectronic devices: Light emitting diode,	
	Photodiode.	
Unit IV	Transistors	10
	Bipolar junction transistor, Transistor operation and its Biasing rule, Transistor	
	currents, Transistor circuit configuration, Transistor characteristics in different	

	configuration, cut-off and saturation points, Active region, Relation between transistor current in various configuration, h Parameters, General idea of FETs.	
Unit V	Transistor Amplifiers Single-stage transistor amplifiers, Common base (CB), Common emitter (CE) and, Common collector (CC) amplifier, Comparison of a amplifier configurations. Amplifier classification based on biasing condition, Power amplifiers (Class A, Push-Pull amplifier, Class B and Class C), Noise and Distortion in amplifiers, Multistage amplifier, Amplifier coupling, RC- coupled two stage amplifier and its frequency response, Advantage of RC coupling	15

- 1. M.K. Baagde, S.P. Singh and Kamal Singh: Elements of Electronics
- 2. B.L. Theraja: Basic Electronics
- 3. V.K. Mehta: Elements of Electronics
- 4. J.D. Ryder: Networks, Lines and Fields
- 5. J.D. Ryder: Electronic Fundamentals and Applications.
- 6. Millman and Halkias: Integrated Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

Course Prerequisites: Passed Semester IV.

DEGREE IN	N SCINCE		
Programme:	Degree in Science	Year: III	Semester: V Practical
	Subject: Physics (Practical)	l	
Course Cod	le: Course Title: Demonstrative Aspects of Basic Electronics (Practical)		
Course Outc			
tudy the Elec	ntal physics has the most striking impact on the industry where etronics and its application in industry and research. ent precision and perfection is achieved through Lab Experime		nts are used to
Credits: 02		Core Compul	sory
		Min. Passing	Marks:17
	Lectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of Lectures
	Lab Experiment List		I
	1. To study characteristics of R-C coupled Amplifier with feedback.		
	2. To study the characteristics of integrating and differentiate3. To draw the characteristics of P-N junction diode.	C	60
	4. To draw the characteristics of PNP and NPN junction trans.5. Measurements of h-parameters of a transistor.6. Study of different types of Rectifiers and Filters.	isistor.	
	7. Verification of Network theorems. 8. Child Langmuir law.		
	9. Triode/ Tetrode/ Pentode characteristics and constants. 10.Study of power supply (Ripple factor).		
	11. Study of Zener diode and regulation (taking different so loads).	ource voltage an	d
	12. Phase measurement using a C.R.O.		
	13. Study characteristics of T.C. Amplifier and B.W.14. To study the Characteristics of a Photo-diode.		
	15. Inverse square law using Photo-Voltaic Cell		

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragat iPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual

Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as

follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

DEGREE IN SCIENCE Programme: Degree in Science Subject: Physics Course Code: Course Title: Modern Physics

Course Outcomes:

- 1. Study of different atomic models.
- 2. Study of optical spectra and X- rays.
- 3. Understand the theory of LASERS which are widely used in industry and research.
- 4. Understanding fundamentals of molecular spectroscopy.
- 5. Study of structure of atomic nucleus and radioactive decay.
- 6. Study of Elementary Particle Physics.

Credits: 04	Core Compulsory
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 33
Internal assessment: 25	

Unit	Topic	No. of Lectures
Unit I	Atomic Models	15
	Thomson model, Rutherford model, Bohr model and spectra of hydrogen	
	atom, Fine structure, Bohr Magnetron, Larmor"s precession, Somerfield	
	model, Stern-Gerlach experiment, Vector atomic model, Space Quantization	
	and Spinning of an electron.	
Unit II	Optical Spectra and X-rays	10
	Optical spectra, Spectral notations, L-S, J-J coupling, Selection rules and	
	intensity rules, Explanation of fine structure of Sodium D line, Zeeman	
	effect, X-ray spectra (characteristics and continuous), Moseley"s law.	
Unit III	Lasers and Fundamentals of Molecular Spectroscopy	15
	Einstein A and B coefficients, Spatial and Temporal coherence, Optical	
	pumping, Population inversion, Laser action, Basic idea of LASER and	
	MASER, Ruby Laser and He-Ne laser, Some applications. Franck-Condon	
	Principle, Molecular spectra, Rotational, Vibration and Electronic spectra of	
	diatomic molecules, General features of electronic spectra, Luminescence,	
	Basics of Raman effect.	
Unit IV	Subatomic Physics	10
	Structure of atomic nucleus, nuclear properties (charge, mass, spin, shape),	
	nuclear binding energy, liquid drop model and semi-empirical mass	
	formula, Law's of radioactive decay, Basic idea of α, β and γ-decay.	

Unit V	Elementary Particle Physics	10
	Elementary Particles History and Classification of Elementary particles on	
	the basis of mass, Fundamental interactions, Lepton and Baryon number,	
	Conservation laws, Concept of Iso-spin, hypercharge and Strangeness, basic	
	idea of quarks	

1. H.S. Mani and Mehta: Introduction to Modern Physics

2. A. Beiser: Perspective of Modern Physics

3. Ahmad and Lal, : Modern Physics

4. B.V.N. Rao: Modern Physics

5. R. Murugeshan: Modern Physics

6. S.N. Ghosal: Nuclear Physics

7. C. B. Banwell: Fundamentals of Molecular Spectroscopy

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

Course Prerequisites: Passed Semester V.

DEGREE IN	SCINCE		
Programme: A	Degree in Science	Year: III	Semester: VI Practical
	Subject: Physics (Practical)		
Course Code	: Course Title: Demonstrative Aspects of Mode (Practical)	ern Physics	
Course Outco	mes:		
study and dete	al physics has the most striking impact on the industration in the modern physics concepts. It precision and perfection is achieved through Lab	•	uments are used to
Credits: 02		Core Con	pulsory
Max. Marks: Internal (Reco External Prac External Viva	ord File): 15 tical Exam: 20	Min. Pass	ing Marks:17
	ectures-Tutorials-Practical (in hours per week):	: 0-0-4	
Unit	Торіс		No. of Lectures
	Lab Experimen	nt List	
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photo 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method 	pelectric effect.	60
	6. To determine the Planck's constant using LED colours.7.To determine the wavelength of laser source us slit.		
	8.To determine the wavelength of laser source using slits. 9. Determination of Ionization Potential using thyr 10. Inverse square law.		е

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Programme: Degree in Science Subject: Physics Course Code: Course Title: Analog and Digital Electronics

Course Outcomes:

- 1. Study of feedback in amplifiers along with their advantages and disadvantages.
- 2. Study of different types of oscillators.
- 3. Understand the concepts of Boolean Algebra and various number systems
- 4. Study of logic gates and their applications.

Credits: 04	Core Compulsory
Max. Marks: 100	Min. Passing Marks: 33
External Exam: 75	
Internal Assessment: 25	

Unit	Topic	No. of Lectures		
Unit I	Feedback Amplifiers	15		
	Principle of feedback amplifiers, Classification of positive and negative			
	feedback, Advantage of negative feedback, gain stability, Decreased			
	distortion, Increased bandwidth, Forms of negative feedback, Positive			
	feedback and its advantage.			
Unit II	Oscillators	15		
	Classification of oscillators, Frequency of oscillating current, Frequency			
	stability of an oscillator, Essential of a feedback LC oscillator, Tuned base			
	oscillator, Tuned collector oscillator, Hartley oscillator, Colpitt oscillator,			
	Clapp oscillator, Tunel diode oscillator, Crystal oscillator, Phase shift			
	oscillator, Wien Bridge oscillator, Relaxation oscillator, Astable,			
	monostable and bistable multivibrator, Schmitt trigger, Saw-tooth generator,			
	Blocking oscillators			
Unit III	Number System	10		
	Number systems, Decimal, Binary, Octal and Hexadecimal number systems,			
	Binary to decimal conversion, Double-Dadd method, Binary operations,			
	Binary addition, Binary subtravtion, Complement of a number (1"s			
	complement and 2"s complement), Binary divison, Representation of a			
	Binary number as electrical signals, Conversion of Binary to octal, Binary			
	to hexadecimal and vice-versa (Inter-conversion), BCD, GREY, EXCESS-3			
	codes.			

Unit IV	Boolean Algebra	10	
	Boolean algebra, Features of Boolean algebra, Laws of Boolean algebra,		
	Equivalent switching circuit, Demorgan"s theorems and duals		
Unit V	Logic Gates	10	
	Positive and Negative logic, Two input OR gate, Diode OR gate and		
	transistor OR gate, Three input OR gate and its truth table, Exclusive OR		
	gates, The AND gate, Diode AND gate and transistor AND gate, The NOT		
	gate, Bubbled gates, The NOR gate, The NAND gate, NAND and NOR as		
	universal gates, The XNOR gate, Adders and subtractors, Half Adders, Full		
	adders,		

- 1. M.K. Baagde, S.P. Singh and Kamal Singh: Elements of Electronics
- 2. B.L. Theraja: Basic Electronics
- 3. V.K. Mehta: Elements of Electronics
- 4. J.D. Ryder: Networks, Lines and Fields
- 5. J.D. Ryder: Electronic Fundamentals and Applications.
- 6. Millman and Halkias: Integrated Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

Course Prerequisites: Passed Semester V

Programme: <i>Degree in Science</i>	Ye	ear: III	Semester: VI Practical
Subject: Physics			
(Practical)			
Course Code: Course Title: Demonstrative Aspects of Analog and (Practical)	Digital Elect	ronics	
Course Outcomes:			
1. Experimental physics has the most striking impact on the industry	wherever the	instrume	ents are used to
study the Electronics and its application in industry and research.			
2. Measurement precision and perfection is achieved through Lab Exp	periments.		
Credits: 02	Core	Compul	lsorv
Max. Marks: 50 Internal (Record File): 15	Min.	Passing	Marks: 17
Internal (Record File): 15 External Practical Exam: 20			
External Viva Voce : 15 Fotal No. of Lectures-Tutorials-Practical (in hours per week): 0-0	<u> </u>		
	/- -		
Unit Topic			No. of Lectur
Lab Experiment I	List		
1. Transistor Bias Stability			
2. Comparative Study of CE, CB and CC amplifier			
3. Clippers and Clampers			
4. Study of Emitter Follower			
5. Frequency response of single stage RC coupled amp	olifier		
6. Frequency response of single stage Transformer cou			
amplifier	1		
7. Effect of negative feedback on frequency response of	of RC		
coupled amplifier			60
8. Study of Schmitt Trigger			
9. Study of Hartley oscillator			
10. Study of Wein Bridge oscillator			
11. Study of Logic Gates			
12. Verification of De Morgan's Theorem			
13. Study of Half Adder			
14. Study of Full Adder			

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester V.

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

List of all Papers Semester-wise Titles of the Papers in Physics

DRAFT

National Education Policy-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges for Post-Graduation.

PROPOSED STRUCTURE OF PG PHYSICS SYLLABUS

2021

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
			Bachelor (Research in Physics)		
	VII		Mathematical Physics	Theory	(04)
			Classical Mechanics	Theory	(04)
			Quantum Mechanics	Theory	(04)
			Communication Electronics	Theory	(04)
TH R			Practical	Practical	(04)
FOURTH YEAR	VIII		Atomic and Molecular Spectra	Theory	(04)
Ē			Electrodynamics	Theory	(04)
			Elementary Particle Physics	Theory	(04)
			Condensed Matter Physics	Theory	(04)
			Elective Paper [one from the list] EL3**	Theory	(04)
			Practical	Practical	(04)
			Master in Physics		
	IX		Advanced Quantum Mechanics	Theory	(04)
			Plasma Physics	Theory	(04)
			Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I	Theory	(04)
			Advanced Electronics -II/Astrophysics -II/High Energy Physics-II/ Spectroscopy-II	Theory	(04)
			Practical	Practical	(04)
EAR	X		Nuclear Physics	Theory	(04)
1.71	[XI		Digital Electronics and Computer Architecture	Theory	(04)
FIFTH YEAR			Advanced Electronics -III/Astrophysics -III/High Energy Physics-III/ Spectroscopy-III	Theory	(04)
			Advanced Electronics -IV/Astrophysics -IV/High Energy Physics-IV/ Spectroscopy-IV	Theory	(04)
			Practical	Practical	(02)

**Elective (04 Credit, one from the list EL3) To be opted in Semester VIII

- 1.
- 2.
- 3.
- 4.
- Statistical Physics
 Bio Physics
 Medical Physics
 Atmospheric Physics
 Nano Materials and Applications 5.

Subject prerequisites:	
Bachelor in Science with Physics as major subject.	

Programme Outcomes (POs):

Students having Degree in *Bachelor (Research in Physics)* should have knowledge of advanced concepts of Physics and ability to apply this knowledge in various fields of academics, research and industry. They may pursue their future career in the field of academics, research and industry.

- PO1 Competence in the methods and techniques of calculations using Mathematical Physics, Classical Mechanics, Quantum Mechanics and Communication Electronics. It will develope an analytical skill on an advanced level and will enable the student to have mathematical tools to solve complex problems of Physics. The Programme will motivate the student to know more about the matter, the universe and the recent developments in the field of science. The student will have adequate knowledge to work for the industry,, consultancy, education, and research
- PO2 The students would gain substantial knowledge in various branches of physics. The programme will enable the student to explore more in the field of his/her choice like Advanced Electronics, Spectroscopy, Astrophysics and High energy Physics. The student will be well equipped with the knowledge required for different organizations, industry, R& D sector.

Programme specific outcomes (PSOs):

PG IST YEAR/ Bachelor (Research in Physics)

Bachelor (Research in Physics) programme provides the student the adequate knowledge, general competence, and analytical skills on an advanced level, needed in industry, consultancy, education, research, or in government organisation.

Programme specific outcomes (PSOs):

PG IIND YEAR/ Master in Physics

- The Master of Science in Physics programme provides student the adequate knowledge to use mathematical tools to solve complex physical problems and have the solid background and experience needed to analyze and solve advanced problems in physics.
- This course would enable the student to acquire scientific skills and the practical knowledge by performing experiments in general physics and electronics.
- The student would also get some research oriented experience by doing theoretical and experimental projects in the last semester under the supervision of faculty.
- The course as a whole opens up several career doors for the students interested in various areas of science and technology in private, public and government sectors. Students may get job opportunities in higher education, research organizations, physics consultancy and many others. Some of the institutions where physics students can start their career are: BARC, DRDO, NPTC, IISc, ISRO, ONGC, BHEL, PRL, NPL, SINP, VECC, IITs, NITs, IIPR etc.

							Subject	ı: Pi	lysics			
Jourse/ Lift	Yea r	Sem .	Paper I	Credi t/hrs	Paper II	Credit/ hrs	Paper III	Credi t/hrs	Paper IV	Credit /hrs	Paper V	Credit
		VII	Mathematica 1 Physics	4/60	Classical Mechanics	4/60	Quantum Mechanics	4/60	Communicati on Electronics	4/60		
Bachelor (Research in Physics)	IV	VII I	Atomic and Molecular Spectra	4/60	Electrodynamic	s 4/60	Elementary Particle Physics	4/60	Condensed Matter Physics	4/60	Elective Paper [one from the list] EL3**	4/60
	V	IX	Advanced Quantum Mechanics	4/60	Plasma Physics	4/60	Advanced Electronics - I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I		Advanced Electronics - II/Astrophysi cs -II/High Energy Physics-II/ Spectroscopy -II	4/60		
Master in Physics	v	X	Nuclear Physics	4/60	Digital Electronics and Computer Architecture	4/60	Advanced Electronics - III/Astrophysi cs -III/High Energy Physics-III/ Spectroscopy- III		Advanced Electronics - IV/Astrophys ics -IV/High Energy Physics-IV/ Spectroscopy -IV	4/60		
Comments												
							Internal Asse	essmen	t and Extern	al Asse	ssment	
	Internal Assessment and External Assessment Internal Assessment Mark s External Assessment				Iarks							

DETAILED SYLLABUS FOR BACHELOR (RESEARCH IN PHYSICS) OR P.G FIRST YEAR

	BACHELOR (RESEARCH IN PHYS	SICS)	
Programme: BAC	CHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VII/PAPER I
Subject: Physics			
Course code	Course Title: Mathema	atical Physics	
	Course Outcomes		
	be able to understand the mathematical me		_
^	ems in physics. It would be helpful in the devel	•	• • • • • • • • • • • • • • • • • • • •
	al concepts and techniques to solve the	•	
	ysics. The knowledge of mathematical physics		
research and de	evelopment as it serves as a tool in almost	every branch of	f science and
engineering Cou	rse.		
Credits: 4			Core
Mars N4	ΛΛ.		Compulsory
Max. Marks: 1 External Exam			Min.
Internal assessi			Passing Marks: 36
Total No. of Lect	ures-Tutorials-Practical (in hours per week): 4-0-0		
	manya		37 0
UNIT	ТОРІС		No. of Lectures
UNIT I	Special Functions Series solution of differ	ential equations	Lectures
	Legendre, Bessel, Hermite, and Laguerre diff	•	
	and related polynomial, physical integral form	-	15
	and their orthogonality relations. Generating I		
	recurrence relation.	unction and	
UNIT II	Curvilinear Coordinates and Tensors Curvilin	naar Caardinatas	
	and various operators in circular, cylindric	-	
	coordinate systems, classification of Tensor		15
	Tensor, covariant and contra-variant tensors	•	
	anti-symmetric Tensors, Kronecker delta sym		
	of Tensor, metric Tensor and Tensor densitie		
HINDER ITT	differentiation and Geodesic equation (variation	*	
UNIT III	Complex Variables Function of complex va	· · · · · · · · · · · · · · · · · · ·	
	Riemann differential equation, Cauchy's in		15
	residues and Cauchy's residues theorem, sin	gularities,	
	evolution of residues and definite integral.		
UNIT IV	Integral Transforms Fourier integral and Fo		
	Fourier integral theorem, finite and infinite	integral, Laplace	15
	transform of elementary function (Dirac delta	& Green's	15
	function), Solution of simple differential equa	tions.	

Suggested Readings:	
B. S. Rajput: Mathematical Physics (Pragati Prakashan, Meerut) L. I. Pipes: Mathematical Physics (McGraw Hill)	
P. K. Chattopadhyay: Mathematical Physics (Wiley Eastern, New Delhi)	
Afriken.: Mathematical methods for Physics	
Harper Charlie: Introduction to Mathematical Physics	
Mathews and Walker: Mathematical Methods of Physics (Benjamin press)	
Horse and Feshbach : Methods of Theoretical Physics (McGraw Hill)	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme:	BACHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VII/PAPER II
	Subject: Physics	1 22
Course code	Course Title: Classical Mechanics	
	Course Outcomes:	
In this cour	se students would learn to apply the Newtonian laws using various	mathematical
formulations	s to describe the motions of macroscopic objects using generalized	d coordinates
momentum,	forces and energy. The classical mechanics would be helpful in und	lerstanding of
advanced br	ranches of modern physics.	
Credits: 4	A V	Core Compulsory
Max. Marks: 100 External Exam: 75 Internal assessment: 25 Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	TOPIC	No. of Lectures
UNIT I	Mechanics of a System of Particles Constraints and generalized coordinates, D Alembert's principle, Lagrange equations for holonomic and non holonomic systems and their applications, conservation laws of linear momentum, energy and angular momentum.	15
UNIT II	Hamiltonian Formulation and Hamilton Jacobi Theory Hamiltonian equations of motion and their physical significance, Hamilton's principle, principle of least action, canonical transformations Hamilton-Jacobi theory, Poisson brackets, properties of Poisson bracket, Poisson's Theorem, Lagrange bracket.	15
UNIT III	Dynamics of a Rigid Bodies Motion of a rigid body, body and space Reference system, angular momentum and Inertia tensor, Principle axes- Principle moments of Inertia, spinning tops, Euler angles, Infinitesimal rotations.	15
UNIT IV	Central Force Problem Action and angle variables, phase integral, small oscillations, Kepler's laws of Planetary motion and their deduction, scattering in a Central field, Rutherford scattering cross section	15
Н. G	Suggested Readings: Foldstein: Classical Mechanics	
Land	Rana & P. S. Jog: Classical Mechanics dau and Lifshitz: Mechanics, Pergamon Sommerfeld: Mechanics, demic Press	

Whittaker: Analytical Dynamics of Particles and Rigid Bodies - Cambridge	
Raychaudhuri : Classical Mechanics, Oxford Bhatia : Classical Mechanics, Narosa.	
H.M. Agrawal: Classical Mechanics, New Age International	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

BACHELOR (RESEARCH IN PHYSICS)				
Programme: BACHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTE	
, , ,			R	
			VII/PAPER	
			III	
	Subject: Physics			
Course code	Course Title: Quan	tum Mechanics		
Course Outcomes:				

The course provides an understanding of the behaviour of the systems at microscopic (atomic and nuclear) scale and even smaller. Students would learn basic postulates and formulations of quantum Mechanics. The course, in fact, plays an important role in explaining the behaviour of all physical systems in the universe. The course includes the study of a brief review of foundations of quantum mechanics, matrix formulation of quantum mechanics, symmetry in quantum mechanics and approximation methods for bound states.

Credits: 4		Core	
Credits. 4		Compulsory	
External Exam: 7 Internal assessme	Max. Marks: 100 External Exam: 75 Internal assessment: 25		
Total No. of Lectu	ares-Tutorials-Practical (in hours per week): 4-0-0		
TINITE	TONG	NT C	
UNIT	ТОРІС	No. of Lectures	
UNIT I	Non-Relativistic Quantum Mechanics and Schrödinger Equation Schrödinger's equation, Probability and current densities, continuity equation, physical interpretation of wave function, orthogonality of eigen functions, Principle of superposition, wave packet, normalization, Schrödinger's equation in three dimensions, centrally symmetric square well and harmonic potentials, harmonic oscillator and its wave functions, Hydrogen atom.	15	
UNIT II	Operator Formulation of Quantum Mechanics State vectors and operators in Hilbert Space, Eigen values and Eigen vectors of an operator, Hermitian ,Unitary and Projection operators, commuting operators, BRA and KET Notations, Postulates of Quantum Mechanics, co-ordinate Momentum and Energy representations, dynamical behavior, Heisenberg, Schrödinger and interaction Pictures	15	
UNIT III	Theory of Angular Momentum Orbital Angular momentum operator, its eigen value and eigen functions, space quantization, spin angular momentum, Pauli's theory of spin, Addition of angular momentum, ClebschGordan coefficients	15	
UNIT IV	Approximation Methods Time independent and Time dependent Perturbation Theory Stationary Perturbation, first and second order	15	

	corrections, WKB approximation methods, connection formula and boundary conditions, Bohr Sommerfield quantization rule, Penetration of potential barrier, Time independent perturbation theory and its applications. Applications of time-dependent perturbation theory for constant perturbation, Fermi Golden rule, Coulomb excitation, Sudden and adiabatic approximation.	
	Suggested Readings	
В. S	S. Rajput: Advanced Quantum Mechanics	
Sch	iff: Quantum Mechanics	
Tha	nkppan: Quantum Mechanics	
Lok		
	Can be opted by	
Bac	chelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
Bac	Course Prerequisites chelor in Science with Physics as major subject	
1. MIT Open Learn	Suggested Equivalent Online Courses: ning - Massachusetts Institute of Technology,	
https://openlearning		
2. National Program		
https://www.youtul	pe.com/user/nptelhrd	
3. SwayamPrabha	· · · · · · · · · · · · · · · · · · ·	
https://www.swaya	mprabha.gov.in/index.php/program/current_he/8	

BACHELOR (RESEARCH IN PHYSICS)					
Programme: BACH	YEAR IV	SEMESTER			
			VII/PAPER IV		
	Subject: Physics				
Course code	Course Title: Communica	tion Electronics			
Course Outcomes					

This course helps the student to gain basic ideas of the fundamentals of communication systems. The course includes Modulation AM and FM (Transmission and reception), SSB transmission, AM detection, AGC, Radio receiver characteristics, FM transmitter, Propagation of Radio Waves ,Antenna , Fundamentals of image transmission,TV transmitter,Transmission Lines etc.The course may provide the opportunity to work in any organization related to communication.

Credits: 4	Core
	Compulsory
Max. Marks: 100	Min.
External Exam: 75	Passing
Internal assessment: 25	Marks: 36
Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0	

UNIT	TOPIC	No. of Lectures
UNIT I	Modulation AM and FM (Transmission and reception): Modulation, AM generation, Power consideration, Balanced modulator, SSB transmission, AM detection, AGC, Radio receiver characteristics, signal to noise ratio, FM analysis, noise considerations, generation, direct method and reactance tube method, FM transmitter, AFC, FM Propagation, phase discriminator	15
UNIT II	Propagation of Radio Waves Ground wave, sky wave and space wave propagation. Ionosphere (Ecclr- larmer theory, magneto ionic theory.	15
UNIT III	Antenna and TV Antenna, HF antenna, Yagi antenna, loop antenna, Satellite communication, parabolic reflector, dish antenna, Fundamentals of image transmission, vestigial transmission, TV camera tubes, image orthicon, vidicon, TV transmitter, TV receiver and picture tubes.	15
UNIT IV	Transmission Lines Voltage and current relations on transmission line, propagation constant, characteristic impedance, impedance matching, quarter wave T/L as impedance transformer, attenuation along coaxial cable, cables of low attenuation, propagation of radio waves between two parallel lines, wave guide modes, TE10 mode and cut off wavelength, cavity resonator, light propagation in cylindrical wave guide, step index and graded index fibers, attenuation and dispersion in fibers	15

Suggested Readings:	
George Kennedy & Davis: Electronics Communication Systems	
Millar & Beasley: Modern Electronics Communication	
R.R Gulani: Monochrome and colour television (Wiley Eastern Limited)	
Taub and Schilling: Principle of Communication Systems (TMH)	
Simon Gaykuti: Communication Systems (John Wiley & Sons Inc. 1994	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
*	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	_
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

BACHELOR (RESEARCH IN PHYSICS)				
Programi	ne: BACHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VII/PAPER V		
	Subject: Physics	,		
Course c				
	Course Outcomes:			
Student and Opti	would gain practical knowledge by performing various experiments of Ecs.	Electronics		
Credits:		Core Compulsory		
Externa Interna	arks: 100 l Exam: 75 assessment: 25	Min. Passing Marks: 36		
Total No	of Lectures-Tutorials-Practical (in hours per week): 4-0-0			
UNIT	List of Experiments	No. of Lectures		
	Study of RC circuit with an AC source using phase diagrams.			
	Absorption Spectrum of KMnO4 using Hilger-Nutting Photometer.			
	Young's modulus by Interference method.	60		
	NPN and PNP Transistor Characteristics with (a) Common base (b)			
	Common emitter configurations/ h – parameter.			
	Study of RC- coupled/ Transformer Coupled Amplifier.			
	Study of B-H curve.			
	Study of Amplitude Modulation / Demodulation.			
	Verification of the Hartmann's Formula.			
	Frank-Hertz experiment.			
	e/m by Zeeman effect.			
	Determination of susceptibility.			
	Study of CRO.			
	Velocity of Ultrasonic waves.			
	Linear Air track.			
	Leacher Wire			

Can be opted by			
Bachelor in Science with Physics as major subject			
Suggested Continuous Evaluation Methods:			
Course Prerequisites Bachelor in Science with Physics as major subject			
Suggested Equivalent Online Courses:			
1. Virtual Labs at Amrita Vishwa Vidyapeetham,			
https://vlab.amrita.edu/?sub=1&brch=74			
2. Digital Platforms /Web Links of other virtual labs may be suggested / added			
to this lists by individual Universities			

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BA	ACHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VIII/PAPER I
	Subject: Physics	
Course code	Course Title: Atomic and Molecular Spectr	ra
the students le technique in s	Course Outcomes ructure includes atomic and molecular spectroscopy. As per the cearn basics concepts of spectroscopic principles and rules. Stude spectroscopy and know about their applications. The course is plore R & D opportunities in various areas of science and tech	nts would learn helpful for the
	dustrial and environmental fields.	<i>8</i> j
Credits: 4 Max. Marks:	100	Core Compulsory Min.
External Exa Internal asses	m: 75 ssment: 25	Passing Marks: 36
Total No. of Le	ctures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of Lectures
UNIT I	Fine structure of hydrogen spectrum, L-S and J-J coupling, Spectroscopic terms, Hund's rule and time reversal, Pauli's exclusion principle.	15
UNIT II	Alkali spectra, spin-orbit interaction and fine structure in alkali Spectra, Equivalent and non-equivalent electrons, Normal and anomalous Zeeman effect, Paschen Back effect, Stark effect, Hyperfine structure (qualitative).	
UNIT III	Molecular spectra of diatomic molecules, Born Oppenheimer approximation, elementary idea of quantization of rotational and vibrational energy, rotational spectra for rigid and non rigid rotations, vibrational spectra (harmonic and an-harmonic), intensity and selection rules and molecular constants.	
UNIT IV	Atomic Polarizability, Raman spectra, Quantum theory of Raman spectra, Determination of molecular structure, Electronic spectra, band system, Progression and sequences, band head formation, Condon parabola, Franck Condon Principle dissociation energy and its determination	
	Suggested Readings: Banwell: Fundamentals of Molecular Spectroscopy	
Barrov	r and Stranghen: Spectroscopy Vol. I, II, & III G.M. v: Introduction to Molecular Spectroscopy Herzberg: Spectra of ic molecules	

Jeanne L Mchale: Molecular Spectroscopy J. M. Brown: Molecular Spectroscopy P. F. Bemath: Spectra of atoms and molecules J. M. Holias: Modern Spectroscopy K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications A Yariv: Quantum Electronics M. D. Levenson: Intoduction to non-linear laser spectroscopy B. B. Laud: Laser and non-linear optics Can be opted by Bachelor in Science with Physics as major subject **Suggested Continuous Evaluation Methods: Course Prerequisites** Passed Semester VII with Physics as major **Suggested Equivalent Online Courses:** 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BAG	CHELOR (RESEARCH IN PHYSICS) YEAR IV	VIII/PAPER
	Subject: Physics	
Course code	• •	
Course coue	Course Outcomes:	
The study of el	ectrodynamics provides basic foundation for the student to	understand advance
I	sics. The course includes Basic equations of Electromagne	
	Maxwell's equation, Four Vector Formalism of Maxwe	
_	, electromagnetic field tensor and Quantization of electromagnetic	•
Credits: 4		Core
		Compulsory
Max. Marks: 1 External Exam Internal assess	n: 75	Min. Passing Marks: 36
Total No. of Lect	tures-Tutorials-Practical (in hours per week): 4-0-0	
TINITO	TONG	
UNIT	TOPIC	No. of Lectures
UNIT I	Electromagnetism	15
	Basic equations; Electrostatics; Magnetostatics; Differ	erent
	Systems of Units, Preliminary notations, four- vect	
	Lorentz transformations, time, space and light like	
	separations, Lorentz invariants, Energy and Momentum.	
UNIT II	Maxwell's Equations	15
	Maxwell's equation, Displacement current, electromagn	netic
	waves in conducting and nonconducting medium, Poynt	ting
	theorem, boundary condition at the interface of conduct	eting
	and non conducting media, propagation between parallel	
	conducting plates. Electromagnetic wave equations	
UNIT III	Four Vector Formalism of Maxwell's Equations	15
	Four vector potential, electromagnetic field tensor, Lore	entz
	invariance, Lorentz force, covariant form of Maxwe	ell's
	equations, four vector current, continuity equation, Ga	nuge
	invariance of Maxwell equation, electromagnetic ener	rgy-
	momentum tensor, Motion of charge particle in	
	electromagnetic field, Lorentz force	
UNIT IV	Electromagnetic Radiation	15
	Lienard-Witchert potential, conventional poten	itial,
	Quantization of electromagnetic energy (virtual photo	con),
	Radiation from an Accelerated Charge, Fields of	an
	accelerated charge; angular and frequency distributions	s of
	the emitted radiation, special cases of acceleration para	
	and perpendicular (circular orbit) to velocity; Larmo	or's

formula and its relativistic Generalization; Bremstrahlung, Cerenkov radiation
Suggested Readings
Jackson: Classical electrodynamics; Wiley Eastern, New Delhi
Landau and Lifshitz: Classical theory of fields; Pergameon Press
Thide: Electromagnetic field Theory
Panofsky and Phillips: Classical Electricity and Magnetism
Landau &Lifshitz : Electrodynamics of Continuous Media
Can be opted by
Bachelor in Science with Physics as major subject
Suggested Continuous Evaluation Methods:
Course Prerequisites Passed Semester VII with Physics as major
Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,
https://openlearning.mit.edu/
2. National Programme on Technology Enhanced Learning (NPTEL),
https://www.youtube.com/user/nptelhrd
3. SwayamPrabha - DTH Channel,
https://www.swayamprabha.gov.in/index.php/program/current_he/8

	BACHELOR (RESEARCH IN PHYS	SICS)	
Programme: BAC	CHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER
	Subject: Physics		III
Course code	Course Title: Elementary	Particle Physics	
Course code	Course Outcomes	Tarticle Thysics	
The course is in	apportant for the students to learn about the mo	et fundamental	huilding blooks
	•		•
	adiation, interaction among elementary particles		
	course provides a platform for the students se	eking research c	pportunities in
high energy phy	SICS.		
Credits: 4			Core
Crouns.			Compulsory
Max. Marks: 1	00		Min.
External Exam Internal assessi			Passing Marks: 36
	ures-Tutorials-Practical (in hours per week): 4-0-0		Marks. 30
	(
UNIT	TOPIC		No. of
			Lectures
UNIT I	Elementary Particles History of elementary	ntary particles,	15
	Classification of elementary particles,	Fundamental	
	interactions, Resonances, Lepton and Ba	aryon number;	
	Isospin, Strangeness, Hypercharge, Gell - M	Mann Nishijima	
	relations, Symmetries and conservation law	rs, Parity, Time	
	reversal and charge conjugation, Parity violati	•	
	violation in mesons, CPT invariance.	,	
UNIT II	Unitary Symmetries and Application in	the Physics of	15
	Elementary Particles Basics of unitary group		
	representation of SU(2), SU(3) diagonal	-	
		•	
	weights, generators of SU(2) and U(2), weights	-	
	fundamental representation of SU(2), general		
	and U(3), Weight of first fundamental rej	-	
	SU(3), shift operators, I, U, V spins, co		
	diagram for the (1 0), (0 1), (3, 0), (1 1) and	d (2 1)	
	representations of SU(3), Gell Mann Okubo	Mass formula.	
UNIT III	Method of Young Tableaux and its Appl	ications Young	15
	Tableaux and unitary symmetry, standard a	arrangements of	
	young tableaux, Dimentaionality of the rep	presentations of	
	SU(N), Multiplets of SU(N-1), subgroup of	SU(N), Baryon	
	multiplets in different representations, gener		
	application for reducing kronecker pro		
	representations, kronecker product of three pa		
	vectors.	arnore state	

		T
	detectors, Ionization chamber, Proportional counter, Geiger-	
	Muller Counter, Scintillation counters and-ray spectrometer,	
	semiconductor detector, Nuclear emulsion technique, Cloud	
	chamber, Bubble chamber	
	Suggested Readings:	
	Suggested Readings:	
рнр	erkins: Introduction to High Energy Physics, Cambridge	
Universi	ty Press, 2000	
S N G	hoshal: Atomic and Nuclear Physics, S. Chand and Company	
	· · · · · · · · · · · · · · · · · · ·	
Ltd, 199	4	
D. C. ff	itha . Introduction of Florecutory Douticles	
D. Griffi	iths: Introduction of Elementary Particles	
DR Lieb	ntenberg: Unitary Symmetry and Elementary Particles,	
Academ	ic Press, 1978	
Hughes	Elementary Particles	
Trugiles.	Elementary Farticles	
Blatt and	1 Weiskopff : Theoretical Nuclear Physics	
Dian and	i Welskopii . Theoreticai Nucleai Filysics	
FF Close		
TE Close	e: Quarks and Patrons	
P P Chet	ng and G.LF Li : Gauge Field Theory:	
T.I. Che	is and O.D. Dr. Gaage Field Theory.	
W. E. B	urcham : Nuclear Physics	
	ingru: Introduction to experimental nuclear physics	
10. 101. 5	ingra. Introduction to experimental nuclear physics	
E. Segre	: Experimental nuclear physics	
2		
	Can be opted by	
I	Bachelor in Science with Physics as major subject	
	Suggested Continuous Fundantian Made 1	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VII with Physics as major	
1 MIT O I	Suggested Equivalent Online Courses:	
_	earning - Massachusetts Institute of Technology,	
https://openlearr	-	
2. National Prog	gramme on Technology Enhanced Learning (NPTEL),	
https://www.you	ntube.com/user/nptelhrd	
3. SwayamPrabl	ha - DTH Channel,	
	ayamprabha.gov.in/index.php/program/current he/8	
1		
L		

BACHELOR (RESEARCH IN PHYSICS)				
Programme: BACHE	LOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER	
			VIII/PAPER	
			IV	
	Subject: Physics			
Course code Course Title: Condensed Matter Physics				
Course Outcomes:				

Course Outcomes:

The students will be able to develop an understanding of the lattice, different types of crystal structures, symmetries. The student would gain insight about the interior of the substances using X-ray diffraction in crystals. This course also includes elastic waves, phonons, and lattice vibrational properties and also superconductivity. The course forms a theoretical basis of experimental material science and technology.

Credits: 4	Core
	Compulsory
Max. Marks: 100	Min.
External Exam: 75	Passing
Internal assessment: 25	Marks: 3 6

Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0

UNIT	TOPIC	No. of Lectures
UNIT I	Crystal Structure Interaction of radiation with matter (for elastic and en elastic scatterings of x- ray). Concept of reciprocal lattice point, calculation of reciprocal lattice point of SC, BCC. and FCC lattices, Application of reciprocal lattice point in diffraction technique. Neutron scattering and its applications. Debye Waller factor. Hyperfine interactions (isomer shift, quadrupole splitting and magnetic splitting), Mössbauer effect and its applications. Basic idea about nanomaterials and nanotechnology. fabrication of nanomaterials. modification of crystal properties in nanodimension.	15
UNIT II	Bonding in Solids Different types of bonding in solids, covalent, metallic, Vander Waal, hydrogen bonding & ionic bonding, Madelung constant of ionic crystals, cohesive energy, Thermal expansion and thermal conductivity, anharmonicity interaction of electrons and phonons with photons (direct and indirect transitions).	15
UNIT III	Lattice Vibrations Concept of dispersion relation, quantization of lattice vibrations (Phonons), normal modes & normal coordinates, longitudinal and transverse modes of vibration, modes of vibration of monatomic and diatomic lattices. Density of states (Phonons), Theory of specific heat of solids: classical theory, Einstein theory and Debye theory. Theory of metals: Classical theory, free electron theory and F-D distribution function, Hall effect.	15
UNIT IV	Crystal Defects, Superconductivity and Magnetism Point defects (Schottky & Frankel Defects) Imperfections, Line defects (Edge& Screw dislocations), Burger vector & Burger	15

Circuit, Role of dislocation in plastic deformation and crystal				
growth.	Introduction	of	superconductivity,	
phenomenol	logical, semi pheno	omenolog	gical and microscopic	
theories of s	superconductors, M	eissner e	ffect, Type-I and type-	
II supercond	ductors, Penetration	depth, o	coherence length,	
Josephson e	effect, Isotope effec	t, Eleme	ntary idea of high	
temperature	superconductors			

Suggested Readings

A. J. Dekker: Solid State Physics

S.O. Pillai: Solid State Physics

C. Kittle: Introduction to Solid State Physics

Verma & Srivastava: Crystallography for Solid State Physics

Can be opted by

Bachelor in Science with Physics as major subject

Suggested Continuous Evaluation Methods:

Course Prerequisites Passed Semester VII with Physics as major

Suggested Equivalent Online Courses:

1. MIT Open Learning - Massachusetts Institute of Technology,

https://openlearning.mit.edu/

- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current he/8

BACHELOR (RESEARCH IN PHYSICS) Programme: BACHELOR (RESEARCH IN PHYSICS) YEAR IV **SEMESTER** VIII/PAPER V **Subject: Physics** Course Title: PRACTICAL Course code Course Outcomes: The student will have adequate knowledge to perform the experiments of different fields of physics with clear understanding of the theory behind the experiment. Student will know about various electronic components and learn to design some basic electronic circuits and study their applications. Credits: 4 Core Compulsory Max. Marks: 100 Min. Passing External Exam: 75 Marks: 36 **Internal assessment: 25** Total No. of Lectures-Tutorials-Practical (in hours per week): 0-0-4 UNIT **List of Experiments** No. of Lectures 1. Study of the Phase measurement by superposition of voltages with LCR Circuits. 2. Study of different oscillators (Hartely, colpit, Weinbridge oscillators etc.). 60 3. Study of an electronically regulated power supply. 4. Study of negative Feed-back Amplifier. 5. Determination of wavelength (λ) and wavelength difference ($\Delta\lambda$) by Michelson Interferometer. 6. Study of different type of Resistances and Diodes. 7. Study of Photo Voltaic Cell. 8. Stefan's Constant 9. FET characteristics 10. Fresnel's Law 11. Cauchy Formula 12. Lattice Dynamic Kit 13. Study of Logic gates 14. Detection Efficiency of Diode 15. Fabry – Perot Interferometer 16. Four Probe method Can be opted by Bachelor in Science with Physics as major subject **Suggested Continuous Evaluation Methods: Course Prerequisites** Bachelor in Science with Physics as major subject **Suggested Equivalent Online Courses:** Virtual Labs Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

	BACHELOR (RESEARCH IN PHYSICS)	
Programme	: BACHELOR (RESEARCH IN PHYSICS) YEAR IV SI	EMESTER VIII L3(1)
	Subject: Physics	
Course cod	v	
	Course Outcomes:	
	e structure includes different aspects of statistical Mechanics and	
for phase	transition. Study of this course will enable students a clear u	understanding of
classical a	nd Quantum Statistics.	
Credits: 4		Elective
Max. Mai		Min. Passing
External 1		Marks: 33
	ssessment: 25 f Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Total No. 0	l Lectures-Tutoriais-Fractical (in hours per week). 4-0-0	
UNIT	TOPIC	No. of Lectures
UNIT I	Foundation of Statistical Mechanics Microscopic and	1.5
	macroscopic states, Density of states, Micro-canonical,	
	Canonical and grand canonical ensembles, Canonical ensemble	
	and Gibb's distribution, Boltzmann–Planck method, Partition	
	function and statistical definition of thermodynamic quantities,	
	Computation of partition functions of some standard systems.	
UNIT II	Statistical Properties System of linear harmonic oscillators in the	15
	canonical ensemble; Grand canonical ensemble and its partition	
	function; Chemical potential; Partition function and distribution	
	for perfect gas; Gibb's paradox; Free energy, entropy, Equation	
	of state and specific heat determination of perfect gas.	
UNIT III	Statistical models Theory of phase transitions, First order phase	15
	transition, Second order phase transitions and higher order phase	
	transitions (elementary discussion), Ising model, One	
	dimensional (with exact solution), Two dimensional (with exact	
	solution) & three dimensional model (elementary idea), Landau	
	theory of phase transition, Weiss theory of Ferro-magnetism,	
	Heisenberg model. Virial equation of states.	
UNIT IV	Quantum Statistics Bose-Einstein and Fermi- Dirac	15
	distributions, Degeneracy, Gas degeneration, Degenerate Bose	
	gas, Bose Einstein condensation, Highly degenerate B-E and F-	
	D gases; examples of Molecular Hydrogen, liquid helium and	
	electron gas in metals.	
0	Suggested Readings	
-	Mechanics: A.S. Davidov	
	Mechanics : B.S. Rajput Mechanics : Paul Roman	
~	l Chemistry : Glastohn	
	Mechanics : Landau and Lifshitz	
	Mechanics: Pathira	
Statistical N	Mechanics: Huang	
	Can be opted by	
	Bachelor in Science with Physics as major subject	

Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current he/8	

n = :	BACHELOR (RESEARCH II		CEL CE CETE
Programme: BACHE	LOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII EL3(2)
	Subject: Physics		VIII LL3(2)
Course code		se Title: Bio Physic	S
	Course Outcomes		
Biophysics is the f	ield that applies the theories and n	nethods of physic	s to understand ho
	work.The student"s knowledge can		
and Medical .	C		
Credits: 4			Elective
Max. Marks: 100	_		Min.
External Exam: 75 Internal assessmer			Passing Marks: 30
	-Tutorials-Practical (in hours per week)): 4-0-0	Wiai Ks. 5
1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	The state of the s		
UNIT	TOPIO	C	No. of
			Lectures
UNIT I	Basic Concepts in Biophysics		15
	Elementary ideas about the	·	
	stabilizing DNA and protein	structure, sugar-p	hosphate
	backbone, nucleosides and nucl	leotides, three din	nensional
	DNA structure, RNA. Protei	ins: primary, se	econdary,
	tertiary and quaternary struct	ures, enzymes a	ind their
	catalytic activity, DNA and	protein folding	g, DNA
	denaturation, replication, mutation	on, intercalation,	
	neurotransmitters, membranes.		
UNIT II	Technique For The Study of	Biological Struct	ture and 15
	Function	8	
	Application of experimental tec		
	(tomography), FTIR and Raman	1	*
	and fluorescence spectroscopy/ n		
IINITE III	optical activity, circular dichrois	m, electrophoresis	··
UNIT III	Photobiology	nd tiggues Dhetes	armth agis
	interaction of light with cell a human eye and vision optical		-
	Laser tweezers and Laser sc		
	Photodynamic therapy.	111010 41111	,
UNIT IV	Radiation Effects on Biological	l Systems	15
	High doses received in a short	rt time, Low-lev	el doses
	limits, direct ionization of DN		
	DNA, Biological effects (Gene		
	sterlity). Bio-imaging: Ultrasour		confocal
	fluorescence imaging and X-ray.		
	Suggested Readings:		
Essentials of	Biophysics: P. Narayanan.		
Basic Moleco	ular Biology: Price.		
	5,		

Quantum Mechanics of Molecular Conformations: Pullman (Ed.).	
Non-linear Physics of DNA: Yakushevich.	
Biological Physics: Nelson. Spectroscopy of biological systems	
Modern Spectroscopy: J.M. Hollas.	
Transmission Electron Microscopy of Metals: Gareth Thomas	
Elements of X-ray Diffraction: Bernard Dennis Cullity.	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Suggested Continuous Evaluation Methods.	
Course Prerequisites Passed Semester VII with Physics as major	
Course Prerequisites	
Course Prerequisites Passed Semester VII with Physics as major	
Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses:	
Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,	
Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/	
Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	
Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd	

BACHELOR (RESEARCH IN PHYSICS)				
Programme: BACHELOR (RESEARCH IN PHYSICS) YEAR IV SEMESTER V				
			EL3(3)	
Subject: Physics				
Course code	urse code Course Title: Medical Physics			

Course Outcomes:

Medical Physics is a branch of science that uses the methods of physics to study biological processes and also working of the instruments and machines used in Medical Science . Physics uses mathematical laws to explain the natural world, and it can be applied to biological organisms and systems to gain insight into their workings. The course includes Physics of Respiratory and Cardiovascular System, Electricity in the Body and Sound/Light and also Equipment's and Modern Medicines . The course opens future prospects of the student in the field of Medical Science .

Credits: 4		Elective
Max. Marks: External Exa Internal asse	m: 75 ssment: 25	Min. Passing Marks: 36
Total No. of Le	ctures-Tutorials-Practical (in hours per week): 4-0-0	Ι
UNIT	TOPIC	No. of Lectures
UNIT I	Mechanics of Human Body	15
	Static , Dynamic an d Frictional forces in the Body,	
	Composition, properties and functions of Bone, Heat and Temperature, Temperature scales, Clinical thermometer,	
	Temperature, Temperature scales, Clinical thermometer, Thermography, Heat therapy, Cryogenics in medicine, Heat	
	losses from Body, Pressure in the Body, Pressure in skull, Eye	
	and Urinary Bladder.	
UNIT II	Physics of Respiratory and Cardiovascular System	15
	Body as a machine, Airways, Blood and Lungs interactions,	
	Measurement of Lung volume, Structure and Physics of	
	Alveoli, Breathing mechanism, Airway resistance, Components	
	and functions of Cardiovascular systems, work done by Heart,	
	Components and flow of Blood, Laminar and Turbulent flow,	
	blood Pressure, direct and indirect method of measuring, Heart	
	sounds.	1.5
UNIT III	Electricity in the Body and Sound/Light In Medicine	15
	Nervous system and Neuron ,Electrical potentials of Nerves,	
	Electric signals from Muscles, Eye and Heart, Block diagram	
	and working to record EMG, Normal ECG wave form, Electrodes for ECG, Amplifier and Recording device, Block	
	diagram and working to record ECG, Patient monitoring, Pace	
	maker. General properties of sound, Stethoscope, Generation,	
	detection and characteristics of Ultrasound, Ultrasound imaging	
	technique, A scan and B scan methods of ultrasound imaging,	

	properties of light, Applications of visible UV, IR light, and		
	Lasers in medicine, Microscope, Eye as an optical system,		
	Elements of the Eye, Ophthalmology Instruments.		
UNIT IV	Diagnostic X-Rays and Nuclear Medicine	15	
	Production and properties of X-rays, Basic Diagnostic X-ray		
	Machine, X-ray image, Live X-ray image, X-ray computed		
	Tomography, Characteristics of Radio activity, Radioisotopes		
	and Radio nuclides, Radioactivity sources for Nuclear		
	medicine, Basic Instrumentation and clinical applications,		
	Principles of Radiation Therapy, Nuclear medicine imaging		
	devices, Radiation sources.		
	Suggested Readings:		
Medical Ph	sysics by Department of Physics, St. Joseph's College, Trichy-2.		
Medical Ph Sons.	sysics by John R. Cameron and James G. Skofronick, John Wiley &		
Hand book of Biomedical Instrumentation : R.S.Khandpur, Tata McGraw Hill Publication Co., Delhi, 1987.			
	Can be opted by		
	Bachelor in Science with Physics as major subject		
Suggested Continuous Evaluation Methods:			
Course Prerequisites Passed Semester VII with Physics as major			
	Suggested Equivalent Online Courses:		
1. MIT Open Learning - Massachusetts Institute of Technology,			
https://openlearnin			
	amme on Technology Enhanced Learning (NPTEL),		
https://www.youtube.com/user/nptelhrd			
3. SwayamPrabha			
https://www.sway	amprabha.gov.in/index.php/program/current_he/8		

	BACHELOR (RESEARCH IN	PHYSICS)		
Programme: B	SEMESTERVIIIE			
S	,		L3(4)	
	Subject: Physics			
Course code	I.	nospheric Physics	1	
Th :	Course Outcomes:		The :1 4	
	ntroduces students to Earth- Atmosphere a l pollution and climate change etc. The course			
	reological department or wants to pursue his/l			
science. The c	ourse is also very important for R& D purposes	S.		
Credits: 4			Elective	
Max. Marks	: 100		Min. Passing	
External Exa	nm: 75		Marks: 33	
Internal asse		4.0.0		
1 otal No. of Lo	ectures-Tutorials-Practical (in hours per week):	4-0-0		
UNIT	TOPIC		No. of Lectures	
UNIT I	Introduction to Earth Atmosphere an	d Meteorology	15	
	Elementary concept of atmospheric science		l it	
	composition, Thermal and pressure variation	•		
	Thermal structure of the troposphere, strate	*		
	and ionosphere, Hydrostatic equation, spectr			
	solar radiation, Green house effect and effe	ective temperature	of	
	earth. Meteorological process and different	system, local wind	ds,	
	monsoons, fogs, clouds, precipitation, Cycle	ones and anti-		
	cyclones, thunderstorms, Mountain Meteorolo	ogy		
UNIT II	IT II Atmospheric Dynamics and Thermodynamics			
	Introduction to atmospheric dynamics, Basic	c conservation law	vs,	
	Applications of the basic equations, circulat	ions and vorticity,		
	Atmospheric oscillations, The general circul	_		
	dynamics, Thermodynamical considerations			
	isothermal processes, equation of state for de	-		
	Humidity parameters, laws of thermo	dynamics, Entro	py,	
	Thermodynamic diagram and their uses.		1.5	
UNIT III	Environmental pollution and climate cl	C	15	
	Atmospheric pollution, type of pollutants			
	emissions, Trace gages, Production and	•		
	stratosphere ozone, Tropospheric ozone, Ro their budget, motion of air-masses (back-air	_		
	modeling (Box model and 3-D model), A classification and properties, concentration	=		
	Absorption and scattering of radiation, or			
	atmospheric, Modeling for aerosols, Estin	=		
	forcing. Definition of climate long term cha			
	of climate change-External and internal, Ge			
	dynamical processes of the atmosphere, clim			
	Review of various climate models.	ی		

UNIT IV	Instrumentation and Observational Techniques	15		
	Convectional measurements of pressure, temperature, humidity,			
	wind speed and direction, sunshine duration, radiation clouds,			
	upper air pressure, temperature, humidity and wind			
	measurements, Polit balloons, radiosonde, dropsonde,			
	ozonesonde, GPS sonde. Application of radars to study the atmospheric phenomenon, LIDAR, SONAR, RASS (Radio-			
	acoustic sounding system), Observational technique for aerosol.			
	Suggested Readings:			
	Suggested Readings.			
	S. Pettersen: An Introduction to meteorology			
	H. R. Byer: General Meteorology Miller, Thompson and Paterson: Elements of meteorology			
	J. M. Wallau and P. V. Hobbs: Atmospheric Science			
	J. A. Ratchiffe: Physics of upper atmosphere			
	R. B. Stull: An introduction to boundary layer Meteorology			
	A.A. Tsonis: An introduction to atmospheric Thermodynamics			
	H. J. Critchfield: General Climatology G. T. Trewartha: An introduction to climate			
	Can be opted by			
	Bachelor in Science with Physics as major subject			
	Suggested Continuous Evaluation Methods:			
	Course Prerequisites			
	Passed Semester VII with Physics as major			
1) ((7)	Suggested Equivalent Online Courses:			
_	Learning - Massachusetts Institute of Technology,			
	earning.mit.edu/			
	rogramme on Technology Enhanced Learning (NPTEL),			
https://www.	youtube.com/user/nptelhrd			
3. SwayamPr	abha - DTH Channel,			
https://www.s	swayamprabha.gov.in/index.php/program/current_he/8			
		L		

BACHELOR (RESEARCH IN PHYSICS)					
Programme: BACHELOR	Programme: BACHELOR (RESEARCH IN PHYSICS) YEAR IV SEMESTERVIIIE				
			L3(5)		
Subject: Physics					
Course code Course Title: Nano Materials and Applications			olications		
Course Outcomes					

Course Outcomes:

This course introduces the essence of nano materials, their synthesis, and characterization. On successful completion of the module students should also be able to understand the optical properties and electron transport phenomenon in nanostructures. It also covers few important applications of nano materials used in this technological era.

Credits: 4		Elective
Max. Mark External Ex	xs: 100 xam: 75	Min. Passing Marks: 33
	sessment: 25	Wiaiks. 33
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
TINITE	TONG	NI CI
UNIT	TOPIC	No. of Lectures
UNIT I	Nanoscale Systems	13
	Density of states (1-D,2-D,3-D). Length scales in physics,	
	Nanostructures: 1D, 2D and 3D nanostructures (nanodots,	
	thin films, nanowires, nanorods), Band structure and density	
	of states of materials at nanoscale, Size Effects in nano	
	systems, Applications of Schrodinger equation- Infinite	
	potential well, potential step, potential box, quantum	
	confinement of carriers in 3D, 2D, 1D nanostructures and its	
	consequences.	
UNIT II	Synthesis of Nanostructure Materials	15
	Metals, Metal Oxide, Carbon based nanomaterials CNT,	
	C60, graphene. Top down and Bottom up approach,	
	Photolithography. Ball milling. Gas phase condensation.	
	Vacuum deposition. Physical vapor deposition (PVD):	
	Thermal evaporation, Chemical vapor deposition (CVD).Sol-	
	through colloidal methods. MBE growth of quantum dots.	
	X-Ray Diffraction. Optical Microscopy. Scanning Electron	
	Microscopy. Transmission Electron Microscopy. Atomic	
	Force Microscopy. Scanning Tunneling Microscopy.	
UNIT III	Optical Properties	15
	Concept of dielectric constant for nanostructures and	
	charging of nanostructure. Quasi-particles and excitons.	
	Excitons in direct and indirect band gap semiconductor	
	nanocrystals. Quantitative treatment of quasi-particles and	

	excitons, charging effects. Radiative processes: General			
	formalization-absorption, emission and luminescence.			
	Optical properties of heterostretures and nanostructures.			
	Optical properties of neterostretures and nanostructures.			
UNIT IV	Electron Transport and Applications of Nanoparticles	15		
	Carrier transport in nanostrutures. Coulomb blockade			
	effect, thermionic emission, tunneling and hopping			
	conductivity. Defects and impurities: Deep level and surface defects.			
	Applications: Applications of nanoparticles, quantum dots,			
	nanowires and thin films for photonic devices (LED, solar			
	cells). Single electron transfer devices (no derivation). CNT			
	based transistors. Nanomaterial Devices: Quantum dots			
	heterostructure lasers, optical switching and optical data			
	storage. Magnetic quantum well; magnetic dots -magnetic			
	data storage. Micro Electromechanical Systems (MEMS),			
	Nano Electromechanical Systems (NEMS).			
	Suggested Readings:			
C.P.Poole Ir	Frank J.Owens, Introduction to Nanotechnology (Wiley India			
Pvt. Ltd.).	Training the world, introduction to Trainetoeninetegy (which indicates			
/	, Nanotechnology: Principles & Practices (Capital Publishing			
Company)	, runoteemology. Timespies & Tructices (cupital Tuonsining			
	adhyay and A. N. Banerjee, Introduction to Nanoscience and			
_	PHI Learning Private Limited).			
	o Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A.			
	, Cambridge University Press.			
· ·				
Tronara Book	er, Earl Boysen, Nanotechnology (John Wiley and Sons).			
	Can be opted by			
	Bachelor in Science with Physics as major subject			
	Suggested Continuous Evaluation Methods:			
	Course Prerequisites			
	Passed Semester VII with Physics as major			
4 3 675	Suggested Equivalent Online Courses:			
_	Learning - Massachusetts Institute of Technology,			
	arning.mit.edu/			
	2. National Programme on Technology Enhanced Learning (NPTEL),			
https://www.y				
3. SwayamPra				
https://www.sv	wayamprabha.gov.in/index.php/program/current_he/8			

	MASTER IN PHYSICS			
Programme: MASTER IN PHYSICS YEAR V SEME			SEMESTER IX	
			PAPER I	
	Subject: Physics			
Course code	Course Title: Advanced	Quantum Mechai	nics	
	Course Outcomes:			
The course includes the	ne study of scattering theory, ident	ical particles, re	elativistic wave	
equations and quantiza	tion of wave fields. The course w	ould describe t	the nature and	
•	energy at subatomic level. In particu			
		•	0.0	
	between a quantum mechanical pa	•	•	
relativistic quantum me	chanics enables the students to under	erstand the beha	viour of objects	
moving with speeds co	omparable to that of light. The known	owledge of this	field forms the	
-	-	-		
realitation for parsamg	foundation for pursuing research in Quantum Field Theory and High Energy physics.			
Credits: 4			Core	
Max. Marks: 100			Compulsory	
External Exam: 75			Min. Passing	
Internal assessment: 25	5		Marks: 36	

Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0

UNIT	TOPIC	No. of Lectures
UNIT I	Free particle Dirac equation	15
	Discrepancies faced by Schrödinger equations, Klein-	
	Gordon equation and its drawbacks, Dirac's equation for a	
	free particle, Dirac matrices, covariant form of Dirac	
	equation, Probability and current densities, Free particle	
	solutions of Dirac equation, Non conservation of Orbital	
	Angular momentum and idea of spin, Interpretation of	
	negative energy and hole theory	
UNIT II	Dirac particle in Electromagnetic Fields	15
	Dirac equation in electromagnetic fields, Magnetic moment	
	of charged particle, Gauge invariance of Dirac equation in	
	electromagnetic fields, Non- relativistic correspondence of	
	Dirac equation; Pauli equation, Adjoint spinors,	
	Symmetries of Dirac Equation: Parity, Time reversal and	
	Charge Conjugation; Lorentz covariance of Dirac	
	Equation, , Bilinear covariants	
UNIT III	Identical Particles and Quantum Field Theory	15
	Identical particles, exchange degeneracy, symmetric and	
	anti symmetric functions for many particle system	
	Classical Fields, Schwinger's action principle, Lagrangian	
	and Hamiltonian densities, Field equation, quantum	
	structure of free fields and the particle concept,	

	Quantization relations, Quantization of non relativistic					
	Schrödinger matter field, System of identical bosons and					
	fermions, Commutation and anti-commutation relations,					
	Occupation number representation, creation and					
	annihilation operators.					
UNIT IV	Quantum Theory of Scattering	15				
	Scattering Theory, Scattering cross section, method of					
	partial wave analysis, phase shift, Optical theorem,					
	scattering length, effective range theory; low energy					
	scattering, Resonance, scattering from a square potential					
	well and a rigid sphere, Born approximation, Validity of					
	Born approximation, Born approximation through time					
	dependent perturbation, its application to square well					
	potential.					
Suggested Readings:						
Da						
&						
Ra						
144	Rajput B. S.: Advanced Quantum Mechanics					
Ro Mo						
Th Mo						
Can be opted by						
_						
Ba						
Course Prerequisites Passed Semester VIII with Physics as major						
	Suggested Equivalent Online Courses:					
1. MIT Open Lea						
https://openlearnin						
2. National Progra						
https://www.yout						
3. SwayamPrabha						
https://www.swayamprabha.gov.in/index.php/program/current_he/8						

MASTER IN PHYSICS					
Programme: MA	ASTER IN PHYSICS	YEAR V	SEMESTER IX PAPER II		
	Subject: Physics				
Course code		Plasma Physics			
TT1	Course Outcomes:	4' 1 41	1.1.		
	ludes Magneto Hydrodynamics, Plasma Pro physicists study plasmas, which are consider				
naturally in stars	s and interplanetary space .The knowledge ac Physics and thus career prospects are bright in	cquired by the stud	dent can be used ir		
Credits: 4			Core Compulsory		
Max. Marks: 100 External Exam: 75 Internal assessment: 25			Min. Passing Marks: 36		
Total No. of Lec	tures-Tutorials-Practical (in hours per week): 4	-0-0	-		
			71 07		
UNIT	TOPIC		No. of Lectures		
UNIT I	Introduction to Plasma		15		
	Elementary concept of plasma:	•			
	Plasma parameters, Drift of guiding				
	drift, Curvature drift, Magnetic mirror,	Plasma			
	confinement				
UNIT II	Magneto-Hydrodynamics and Fluid F		15		
	Plasma Oscillation, Fluid equations	•			
	Continuity equation, Wave Propogation	-			
	plasma, Magneto Hydrodynamics , Hydrodynamical				
	description of Plasma: fundamental equ				
	convective derivative, hydromagnetic	waves, magneto-			
	sonic and Alfven waves.				
UNIT III	Magneto Plasma		15		
	Wave phenomena in Magneto plasr				
	Phase velocity, group velocity, cutof				
	electromagnetic wave propagating	-			
	perpendicular to the magnetic field Heli	icon, Faraday			
	rotation,.				
UNIT IV	Electromagnetic Wave Propagation in	ı Plasma	15		
	Propagation at finite angle and	CMA diagram,			
	Propagation through ionosphere and ma	-			
	Derivation of moment Equation 1	from Boltzmann			
	Equation, Momentum balance equation,	, Equations of			
	state, Two-fluid equations, Plasma resis	tivity			
	Suggested Readings:				
	Jackson: Classical Electrodynamics; Wiley Est	ern, New Delhi			

Bittencourt: Plasma Physics Chen: Plasma Physics	
Robert J Goldston and Paul H. Rutherford: Introduction to Plasma Physics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS			
Programme: MASTER IN PHYSICS		YEAR V	SEMESTER IX PAPER III a (Specialization paper)
Subject: Physics Course code Course Title: Advanced Electronics- I			
Course Course True. Tavanteed Electronics 1			

Course Outcomes:

This course helps the students to gain basic ideas of the construction and working of electronic devices and circuits. The course includes the study of IC technology, Operational amplifier as linear Analog systems and non-linear analog systems. The course is of much practical purpose for the students to learn basics of integrated circuit technology which has wide applications in computing, process control, signal processing, communication systems, digital instruments etc.

Credits: 4	Core Compulsory
Max. Marks: 100 External Exam: 75 Internal assessment: 25	Min. Passing Marks: 36

UNIT	TOPIC	No. of
	T. C. L. C. L. T. L. L.	Lectures
UNIT I	Integrated Circuit Technology	15
	Classification of IC's, Fabrication of IC's & components,	
	Basic monolithic integrated circuit technology, processes used	
	in monolithic technology, active & passive components, metal	
	semiconductor contact, thick & thin film IC's, hybrid IC's,	
	advantages & limitations of integrated circuits	
UNIT II	Operational Amplifier	15
	Basic operational Amplifier, Inverting & Non inverting OP –	
	AMP, Common Mode Rejection Ratio (CMRR), Operational	
	Amplifier parameters, effects of offset, frequency response and	
	stability	
UNIT III	Linear Analog Systems	15
	Circuit type of OP – AMP 741, Summing Amplifier, voltage	
	follower, current to voltage, voltage to current converter,	
	Integrator, Differentiator, Logarithmic Amplifier,	
	Antilogarithmic Amplifier	
UNIT IV	Non - Linear Analog Systems	15
	Comparators, Discriminators, sample & hold circuits, Zero	
	crossing detector, precision rectifier, waveform generators, OP	
	-AMP as astable, monostable and bistable multivibrator,	
	regenerative comparator (Schmitt trigger), IC 555 timer	
	Coughlin: Operational Amplifiers and Linear Integrated Circuits.	
	Schilling and Belove: Electronic circuits Discrete and Integrated,	

Mcgraw Hill			
Millman and Halkias: Electronic Fundamentals & A Mcgraw Hill	pplications, Tata		
Millman and Halkias: Integrated Electronics K.R. B. Circuits, Khanna Publishers G.K.	otkar: Integrated		
Mithal and Ravi Mittal: Electronic Devices & Circu Publishers	its, Khanna		
Roychaudhary and Jain: Operational Amplifier & I Circuits	inear Integrated		
V.K. Mehta: Electronics for Scientists & Engineers R and Paul H. Rutherford: Introduction to Plasma Phys			
Can be opted by			
Bachelor in Science with Physics as major subject			
Suggested Continuous Evaluation Methods:			
Course Prerequisites			
Passed Semester VIII with Physics as major			
Suggested Equivalent Online Courses:			
1. MIT Open Learning - Massachusetts Institute of Technology,			
https://openlearning.mit.edu/			
2. National Programme on Technology Enhanced Learning (NP	TEL),		
https://www.youtube.com/user/nptelhrd			
3. SwayamPrabha - DTH Channel,			
https://www.swayamprabha.gov.in/index.php/program/current_ho	e/8		

MASTER IN PHYSICS			
Programme:	MASTER IN PHYSICS	YEAR V	SEMESTER IX
1 Togramme.	WINSTERMINITISIES	1 L/ IIC V	PAPER III b
			(specialization
			paper
	Subject: Physics	1	
Course code		Title: Astrophysics –I	
	Course Outcomes:		
	would be important to understand the spheri	•	
in astrophys	sics, and physics of solar system and extra	solar planets. The c	ourse provides an
opportunity	to understand the optics of the different	nt astronomical inst	ruments such as:
telescopes,	CCD camera etc. It has wide spared in use of	R& D sector.	
Credits: 4	•		Core
Credits. 4			Compulsory
Max. Mark			Min.
External E			Passing Marks: 36
	sessment: 25	4.0.0	Marks: 36
Total No. of	Lectures-Tutorials-Practical (in hours per week)	: 4-0-0	
UNIT	TOPIC		No of
UNII	TOPIC		No. of Lectures
UNIT I	Spherical Astronomy Celestial sphere,	Celestial coording	
CIVIII			
	system (equatorial and alt-azimuth): altitu	•	
	ascension and declination, hour angle, sid		
	time, summer and winter solstice,		
	measurements: AU, parsec, standard	d candles, distar	ice
	measurement by geometric means (paralla	ax, distances to oper	n
	clusters).		
UNIT II	Solar System Idea of solar system, Study	v of planets and th	eir 15
	satellites, Earth-Moon system, tidal force	•	
	comets and their origin, composition and		
		dynamical evolution	,,,,,
TINITE TO	extra solar planets and their detection.	. 1	1.5
UNIT III	Telescopes: Basic Optics, Types of	-	^
	mounting systems. Optical telescopes, Inf		
	ray and Gamma-ray telescopes. Schm	idt telescopes. So	lar
	telescopes. Design and construction o	of a simple opti	cal
	telescopes. Active and adoptive optics in a	stronomical study.	
	Sky charts and their importance.	•	
UNIT IV	Classification of detectors, characteristics	of detectors. Detect	ors 15
	*		
	for optical and infrared wavelength region	-	~
	Coupled Device (CCD). sensitivity, noise		• .
	spectral response, Johnson noise, sign		io,
	Application of CCD for stellar imag	ing, photometry a	nd
	spectroscopy. Importance of space	based astronom	ıy.
	Observational techniques of astronomical		-
	SSSI, anonar teeminques of astronomical	semes nom space	

infrared, EUV, X-ray and Gamma-ray regions of the electromagnetic spectrum.			
Suggested Readings:			
Suggested Readings.			
Abhyankar K.D.: Astrophysics, Galaxies and Stars			
VaidyanthBasu : An Introduction to Astrophysics			
Motz : Astrophysics			
K S Krishnaswamy : Astrophysics: A Modern Perspective			
W. M Smart: Spherical Astronomy			
Mark A. Garlick: The Story of the Solar System			
Can be opted by			
Bachelor in Science with Physics as major subject			
Suggested Continuous Evaluation Methods:			
Course Prerequisites			
Passed Semester VIII with Physics as major			
Suggested Equivalent Online Courses:			
1. MIT Open Learning - Massachusetts Institute of Technology,			
https://openlearning.mit.edu/			
2. National Programme on Technology Enhanced Learning (NPTEL),			
https://www.youtube.com/user/nptelhrd			
3. SwayamPrabha - DTH Channel,			
https://www.swayamprabha.gov.in/index.php/program/current_he/8			

MASTER IN PHYSICS			
Programme: MASTER IN	NPHYSICS	YEAR V	SEMESTER IX
			PAPER III c
Subject: Physics			
Course code Course Title: High Energy Physics- I			
Course Outcomes:			

Students would be able understand the complex properties and behaviour of high energy particles at the microscopic level. This course would encourage students to peruse higher study and research in particle and high energy Physics.

Credits: 4	Core Compulsory
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 36
Internal assessment: 25	

UNIT	TOPIC	No. of Lectures
UNIT I	Quantization of Scalar Fields Lagrangian Formulation, Hamiltonian and momentum densities, Neutral and Charged scalar fields and their quantization, Momentum representation and frequency splitting, Identification of various particle operators, Charge operator, Algebra of field operators, Invariant delta function and its representations, Covariant commutation relations and their properties.	15
UNIT II	Quantization of Spinor Field Lagrangian formulation for Spinor field, Hamiltonian and momentum densities, Quantization of Spinor Field, Momentum representation and frequency splitting, Identification of various particle operators, Charge operator for Spinor field, Algebra of Spinor field operators, Covariant form of anti-commutation relations.	15
UNIT III	Quantization of Electromagnetic Field Classical electromagnetic field theory and its gauge formulation, Covariant Lagrangian formulation for EM field, Quantization of EM field, Momentum representation and frequency splitting,	15
UNIT IV	Identification of various particle operators, Concept of longitudinal, temporal and transverse photons, Covariant commutation relations for EM potential operators, Problems with temporal photons and Lorentz condition, Resolution through Gupta- Bleular formulation	15
	Suggested Readings: L. Ryder: Quantum Field Theory B.K. Agarwal: Quantum Mechanics and Field Theory	

F Mandel and Shaw: Quantum Field Theory		
P. Roman: Quantum Field Theory		
A. Das: Quantum Field theory		
M. E. Peskin, D.V. Schroeder: An Introduction to Quantum Field Theory		
B.S.Rajput : Advanced Quantum mechanics		
Can be opted by		
Bachelor in Science with Physics as major subject		
Suggested Continuous Evaluation Methods:		
Course Prerequisites Passed Semester VIII with Physics as major		
Suggested Equivalent Online Courses:		
1. MIT Open Learning - Massachusetts Institute of Technology,		
https://openlearning.mit.edu/		
2. National Programme on Technology Enhanced Learning (NPTEL),		
https://www.youtube.com/user/nptelhrd		
3. SwayamPrabha - DTH Channel,		
https://www.swayamprabha.gov.in/index.php/program/current_he/8		

	MASTER IN PHYSICS		
Programme	:: MASTER IN PHYSICS	YEAR V	SEMESTER IX PAPER III d
	Subject: Physics		
Course cod	e Course Title: Spe	ctroscopy-I	
application	Course Outcomes: rse the students would study the various types of last in science and technology. Knowledge acquired by thustries and R&D sector.		
Credits: 4			Core
Max. Mar External l Internal a			Compulsory Min. Passing Marks: 36
	f Lectures-Tutorials-Practical (in hours per week): 4-0-0		_ <u> </u>
UNIT	TOPIC		No. of Lectures
UNIT I	Rotational Spectra Rotational spectra: rotational populations, linear, symmetric, spherical and a molecules, rotational selection rules for linear meffect in molecular rotation spectra, Molecular respin coupling, Positive and negative character functions of linear molecules, Symmetric character and statistical weight of homo-nuclear molecule.	symmetric top olecules, Stark totation-nuclear of the wave -antisymmetric	
UNIT II	Vibrational Spectra Vibration spectra of polyatomic molecule, coupling of rotation and vibration, perpendicular and parallel bands, Normal modes of vibration and their analysis in Cartesian coordinates, normal coordinates and their internal coordinates, calculation of vibrational frequencies and force field of H2O and CO2 molecules, anharmonicity, degenerate and non-degenerate vibrations, inversion doubling, Quantized Vibrational motion of polyatomic molecules.		
UNIT III	Electronic Spectra Spectroscopy of Diatomic a Molecules: Coupling of Electronic and Rotation Diatomic Molecules and Rotational structure of 1 - 1Σ transitions. Vibronic interaction and Hotheory for absorption spectrum of benzene vapour	onal motion in π - 1 Σ and 1 Σ erzberg Teller	1
UNIT IV	Single vibronic level spectroscopy and lifetime levels in benzene, Quantum yield, Kasha Rule a of nonradiative transtions in molecules, Jablansk qualitative treatment of small molecule and large for nonradiative transitions.	nd the concept	t I

Suggested Readings:	
C.N. Banwell: Fundamentals of Molecular Spectroscopy	
Walker and Stranghen: Spectroscopy Vol. I, II, & III	
Herzberg: Spectra of diatomic molecules Jeanne	
L. Mchale: Molecular Spectroscopy	
P.F. Bemath: Spectra of atoms and molecules	
J.M Holias: Modern Spectroscopy	
K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications A Yariv: Quantum Electronics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS				
Programme: MAST			EMESTER IX APER IV a		
	Subject: Physics				
Course code	Course Title: Advance	ed Electronics- II			
This sayman halms	Course Outcomes:	dicital communic	ation antico		
-	the students to gain basic ideas of the	-	-		
	emory and optoelectronic devices. The cou	-	cucai purpose		
for the students to	learn advanced concepts of digital communi	cation systems.			
Credits: 4			Core		
			Compulsory		
Max. Marks: 100 External Exam: 7	15		Min.		
Internal assessme			Passing Marks: 36		
Total No. of Lecture	es-Tutorials-Practical (in hours per week): 4-0-0				
UNIT	TOPIC		No. of Lectures		
UNIT I	Digital Communication		15		
	Digital signal processing, Image process	eing (Basic ideas			
		- ,			
	only), Pulse Modulation systems, Pulse Amplitude				
Modulation, Pulse Width Modulation, Pulse position modulation, Pulse code modulation, Delta modulation					
	Frequency division multiplexing (FDM), Basic idea of digital				
	telemetry		15		
	Optical communication	CC			
	Principle of optical communication, Di				
	propagation of E. M. Wave through op				
	concept, classification of fibres and ray pa	-			
	multimode fibres and cladding, Optical				
	Optical Fibre communication Receiver, B				
	Signal path through optical data link, Bloc	-			
	optical Receiver, Advantages of optical con	nmunication.	1.5		
	Optoelectronic devices		15		
	Light propagation in cylindrical wave gui				
	films. Photoconductive devices (LDR),	charge coupled			
	devices (CCD), LCDS.				
UNIT IV	Memory devices		15		
1	Memory devices, static and dynamic	random access			
	memories SRAM and DRAM, CMC				
nonvolatile-NMOS, magnetic, optical and ferromagnetic					
memories.					
			+		

Suggested Readings: Coughlin: Operational Amplifiers and Linear Integrated Circuits.	
Mchilling and Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill	
Millman and Halkias: Electronic Fundamentals & Applications, Tata Mcgraw	
Millman and Halkias: Integrated Electronics	
K.R. Botkar: Integrated Circuits, Khanna Publishers	
G.K. Mithal and Ravi Mittal: Electronic Devices & Circuits, Khanna Publishers	
Malmstadt and Enke: Electronics for scientists	
Taub and Schilling: Principal of communication systems	
Simon Gayukti: Communication Systems	
Martin S. Roden: Analog & Digital Communication Systems	
V. K. Sarkar and D. C. Sarkar: Optoelectronics and Fibre Optic Communication.	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	
<u> </u>	

	ALL CENT IN THE COLUMN					
D 34.4.0	MASTER IN PHYSICS Programme: MASTER IN PHYSICS YEAR V SEMESTER IX					
Programme: MAS	SEMESTER IX PAPER IV b					
	Subject: Physics					
Course code	Course Title: As	trophysics –II				
TTI C '11	Course Outcomes:		1.1			
_	provide the deeper understanding of the radi					
	matter. It would be important to underst					
stars. This study	is crucial for the deeper knowledge of the	neutron stars	, white dwarfs and			
black holes. Their	study provides the insight for the gravitation	nal waves.				
Credits: 4			Core Compulsory			
Max. Marks: 100 External Exam:			Min. Passing			
Internal assessm			Marks: 36			
	res-Tutorials-Practical (in hours per week): 4-0-0)				
UNIT	TOPIC		No. of Lectures			
UNIT I	Radiation transfer: Definitions of specif	fic intensity,	15			
	mean intensity, flux and energy density;	Equation of				
	radiation transfer; solutions in some sp	ecific cases,				
	optical depth; Thermal emission; Blackbo	dy spectrum				
	and its characteristics; Kirchoff's law; Ei					
	coefficients.					
UNIT II	Interior Properties of Stars Hydrostatic	eauilibrium.	15			
	Virial theorem, Polytrophic indices, Lane – Emden					
equation LTE, Radiative equilibrium, stability						
	condition of convective and radiative equilibrium,					
	*					
	Continuous spectra of stars, Stellar opacity, limb darkening, line blanketing, theory of Fraunhofer lines,					
		illiotei illies,				
TIME III	curve of growth and line broadening.	1 1 11 1	1.5			
UNIT III	Elementary theory of white dwarfs, Char		15			
	limit for white dwarf stars, neutron stars th					
	properties, Pulsars, black holes, low media					
	and high mass stars, death of high mass stars,					
	supernova remnants					
UNIT IV	AGNs and Quasi-stellar Objects Theory	y of AGNs,	15			
	Syferts, quasars and their energy generation and					
	redshift anomaly. Different AGN models, radio lobes					
	and jets, Gamma ray bursts.					
	Suggested Readings:					
Abhyankar K.D.: Astrophysics, Galaxies and Stars						
17						
Va	idyanth Basu: An Introduction to Astrophysics					

motz: Astrophysics A. R. Choudhuri : Astrophysics for

Physicists

B. D. Abhyankar: An Introduction to Astrophysics	
T. Padmanabhan: Astrophysical Processes	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MACTED IN DIIVOLOG		
Programme: MAST	MASTER IN PHYSICS	YEAR V	SEMESTER IX
Frogramme. WIAS	PAPER IV c		
	Subject: Physics	I	1
Course code	Course Title: High I	Energy Physics-II	
	Course Outcomes:		
	provide the knowledge of basic building		
	ents will also be able to know the complicated		
	of God particle in LHC experiment in the ye	ear 2012.It would	open doors for the
students who want	to work in the field of HEP.		
Credits: 4			Core
			Compulsory
Max. Marks: 100 External Exam:) 75		Min. Passing
External Exam: Internal assessme			Marks: 36
	es-Tutorials-Practical (in hours per week): 4-0-	0	
	(== === F == = 312)i		
UNIT	TOPIC		No. of Lectures
UNIT I	Lie Groups and Lie Algebra Symmetri	es, Groups and	15
	conservation laws, Lie groups and		
	representation of the groups, Lie Alg	gebra, Different	
	dimensions and parameter groups-their	generators and	
	algebra, Simple and semi-simple Lie Al	gebra, Standard	
	form of Lie Algebras, Root diagrams for	r groups of	
	different rank.		
UNIT II	Quark Model Fermi Yang model,	Sakata model,	15
	Necessity of Quark model, Shortcoming	gs of Eight fold	
	way, Gell - Mann Zweig model,	Quark-Lepton	
	symmetry and structure of Hadrons,		
	quantum number and charmed quark,	•	
	of charm, bottom and top quarks, B		
	moments in quark model, Experimental s	tatus of Quarks.	
UNIT III	Gauge Field Theories Concept of gauge to		15
	connections, Principle of gauge invariance	ce, Global and	
	local Abelian gauge invariance, U(1) gauge	ge invariance of	
	QED.		
UNIT IV	Yang- Mills gauge field, Non-Abelian ga		15
	(SU(2) case), Concept of spontaneous		
	breaking and Goldstone Bosons, Higgs M		
	physical examples and mass generation for Suggested Readings:	or gauge fields	
.E.			
D.0	C. Cheng and O Neil : Elementary Particle Phys	sics	
P.Cheng and G.LF Li: Gauge Field Theory			
I.J.	Aitchison and A.J. Hey: Gauge theories in Par	rticle Physics	

H. Georgi: Lie Algebras in particle Physics

D. B. Lichtenberg: Unitary Symmetry and Elementary Particles, Academic Press, 1978	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	S			
Programme: MA	STER IN PHYSICS	YEAR V	SEMESTER IX PAPER IV d		
	Subject: Physics	•			
Course code		Spectroscopy -II			
In this course the	Course Outcomes: students would study the various types of las	ers, Laser spectros	copy and their		
	ience and technology. Knowledge acquired by	the course will be	of much use for		
various industries	s and R&D sector.				
Credits: 4			Core Compulsory		
Max. Marks: 1 External Exam Internal assessi	: 75		Min. Passing Marks: 36		
Total No. of Lect	ures-Tutorials-Practical (in hours per week): 4	-0-0			
UNIT	TOPIC		No. of Lectures		
UNIT I	Radiation and Matter Interaction	of radiation wit			
	matter, Einstein quantum theory of ra				
	coefficients, Momentum Transfer, Li				
	optical frequencies, Coherence Spatial				
	Monochromaticity, kinetics of optical a	*			
	width, line broadening mechanisms.				
UNIT II	Basic Elements of Lasers Spont	taneous emission	n. 15		
	Stimulated emission, Possibility of a				
	pumping, Population Inversion, Three and four level				
	scheme, Threshold condition, rate equ				
	resonators & laser modes, gain saturati				
UNIT III	Type of Lasers Different types of lase	ers, gas lasers, He	- 15		
	Ne laser, N2 & CO2 lasers dye lasers,	, solid state lasers	3,		
	Nd-YAG, semiconductor lasers. Tunab	ility of lasers			
UNIT IV	Applications of Lasers		15		
	Basic application of laser spectroscopy	, laser cooling			
	and trapping of atoms etc.				
	Suggested Readings:				
.1	N. Banwell: Fundamentals of Molecular Spect	roscopy			
V					
I	Herzberg: Spectra of diatomic molecules				
J	eanne L Mchale: Molecular Spectroscopy				
.]	F. Bemath: Spectra of atoms and molecules				
N	M Holias: Modern Spectroscopy				
K	K. Thyagrajan and A.K. Ghatak: Lasers: Theor	y and applications			

A Yariv: Quantum Electronics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

				IN PHYSICS			
Programme: MASTER IN PHYSICS YEAR IV SE							
			0.11	, DI .		IX/PAPER V	
C 1	<u> </u>			t: Physics arse Title: PRAC	CTIC A I		
Course cod	ie			Outcomes:	LIICAL		
The stude	nt will have a	dequate k			evneriments (of different fields	of
		-	_	-	-	of different fields	OI
		_		behind the exp		1	
	III know about	various ei	ectronics ex	periments and	some advance	ed experiments in	
Physics							
Credits: 4						Core	
						Compulsory	
Max. Mai						Min. Passir	ıg
External a	Exam: 75 issessment: 25	τ.				Marks: 36	
			ical (in hours	per week): 0-0	-4		
1000111010		711415 1 1401	icai (iii iioais	per week). o o	•		
UNIT			List of Expe	riments		No. of Lectu	res
	1. V	erification	of Richards	son's law.			
	2. S	udy of ES	R spectra of	a given samp	le.		
	3. H	all Effect					
	4. R	CS Spectr	ometer				
		•	spectromete	r			
	_	adio Rece	•	•			
			an's oil drop	mathad			
		•	_				
		_	-	e of diode cha		60	
	9. I	lastic con	istants of a	cubic crystal b	by ultrasonic		
		aves.					
		•	Iultivibrator				
	11.8	tudy of	transistor	amplifier	cum feedba	ack	
	a	mplifiers.					
	12.8	tudy c	of absorp	otion of	KMnO4	by	
	S	pectrophor	tometer				
	13. 3	Study of d	ifferent FET	s and MOSFE	ETs.		
		•	hermo lumi				
		5. Study o					
			be opted by	I			
		~ · ·	- ac opeca a,				
	Bachelor i	n Science v	with Physics	as major subj	ect		
		1.0	ъ 1	35 (1 1			
Suggested Continuous Evaluation Methods:							
Course Prerequisites							
Bachelor in Science with Physics as major subject							
_		_	ivalent Onli				
1. Vir	tual Labs	at	Amrita	Vishwa	Vidyapeetha	ım,	

https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

	MAS	STER IN PHYSICS	
Programme: MA	SEMESTER X		
		Salain ata Dhamina	PAPER I
Course code		Subject: Physics Course Title: Nuclear Phy	giag
Course code		Course Outcomes:	51C5
In this soumes s	_		ualai mualaan famaaa ama
		out the general properties of nu	
detectors, radio	pactive decay and nucle	ear reactions. The course build	s a foundation for the
students to car	ry out research in the f	ield of nuclear physics, high	energy physics, nuclear
astrophysics, nuclear reactions and applied nuclear physics.			
astrophysics, no	erear reactions and appr	ea nacioni pinysies.	
Credits: 4			Core
Citatis. 7			Compulsory
Max. Marks:	100		Min. Passing
			Marks: 36
Internal assess	sment: 25		
Total No. of Lec	tures-Tutorials-Practical (ii	n hours per week): 4-0-0	
UNIT		TOPIC	No. of
			Lectures
UNIT I	Nuclear Properties	and Nuclear Models Conce	pts of 15
Atomic Nuclear-Size, Shape, charge distribution, spin &			
	Atomic Nuclear-Size	e. Shape, charge distribution.	snin &

parity, magnetic moment; electric quadrupole moment; binding energy; semi-empirical mass formula, mirror nuclei, Liquid drop model, Experimental evidence for shell effects, Shell model, Magic numbers, Spin orbit coupling, Single particle shell model-its validity and

Nuclear Forces and Nuclear Interactions Theory of Deuteron and nuclear level properties, nucleon - nucleon

scattering, Yukawa's Meson theory of nuclear forces, Spin dependence and charge independence of nuclear

Conservation laws; Nuclear reaction Kinematics; charge particle reaction spectroscopy; neutron spectroscopy;

transmutations, continuum theory of nuclear reaction,

Nuclear Decays Basic understanding of and - decay,

Fermi theory of beta decay, selection rules in -decay, Neutrino hypothesis, Parity violation in beta decay, K

Kinds

nuclear cross-section; compound nucleus;

Nuclear fission, Chain reactions, Nuclear fusion,

highenergy

of

nuclear

nucleon-nucleon

reactions;

Nuclear

15

limitations; collective model.

low

Reactions

Thermonuclear reactions.

capture and internal conversion.

&

interactions,

forces.

Nuclear

UNIT II

UNIT III

UNIT IV

Suggested Readings:	
E. Burcham: Nuclear Physics	
Ervin Kapalan: Nuclear Physics	
Roy & Nigam: Nuclear Physics	
S. N. Ghoshal: Atomic and Nuclear Physics	
A.Enge: Nuclear Physics	
.D. Evans: Nuclear Physics	
E. Segre: Nuclei and Particles	
H.M. Agrawal: Nuclear Physics, PHI Learning	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS					
Programme: MASTER IN PHYSICS YEAR V SEMESTER X					
PAPER II					
Subject: Physics					
Course code Course Title: Digital Electronics and Computer Architecture					

Course Outcomes:

The course enables student to get knowledge about Digital Electronics and Computer Architecture. The course includes Fundamentals of Digital Circuit, Computer Organization and Architecture , Instruction formats & Microprocessor, Data Communication, Computer and Communications. The course helps student to work for the development of technology and also the for the industry and various Government organizations.

Credits: 4	Core Compulsory
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 36
Internal assessment: 25	

Total No. of Lectures-Tutorials-Hactical (in flours per week). 4-0-0			
UNIT	TOPIC	No. of Lectures	
UNIT I	Digital Circuit & Microprocessor Elementary idea of combinational and sequential circuits, Overview of Microcomputer organization and operation, Microprocessor evolution and types, Fundamental knowledge of Microprocessor (8085/8086), Architecture and its operation, Basic idea of logic devices for interfacing 8085/8086.	15	
UNIT II	Computer Organization and Architecture Central Processing Unit, Computer organization, Instruction formats (e.g. Three address, Two address etc.), addressing modes, Timing diagram, Interconnection of different units, I/O to processor and processor to memory communication, Interrupt structures, Multiprogramming, processor features RISC, CISC, cache memory, real and virtual memory.	15	
UNIT III	Data Communication Computer and Communications, Need for communication networks, Internet and World Wide Web, communication protocols, Local Area Networks, Interconnecting networks, Future of Network Technology.	15	
UNIT IV	Computer Network Characteristics of communication channels, Allocation of Channels, Physical Communication media, Public Switched Telephone Network, Cellular Communication Path, ATM networks Suggested Readings: Morris Mano: Computer system Architecture, (PHI) (Eastern Economy Edition)	15	

V. Rajaraman : Fundamentals o India)	of computers, (Prentice Hall of
MorriesMano : Computer syste Edition)	m architecture, (Estern Economy
B. Ram: Computer fundamenta organization(New Age Internat	
TenanBomm: Computer Netw	ork
Ramesh Gaonkar : Microproce and application with the 8085	ssor, Architecture, programming
HafizerRehaman: Microprocess Intel 8085 and 8086	for programming and Interfacing
Can be opted	by
Bachelor in Science with Physi	cs as major subject
Suggested Continuous Evalu	uation Methods:
Course Prerequ	isites
Passed Semester IXwith P	hysics as major
Suggested Equivalent On	line Courses:
1. MIT Open Learning - Massachusetts Inst	
https://openlearning.mit.edu/	
2. National Programme on Technology Enh	anced Learning (NPTEL),
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.ph	p/program/current_he/8

MASTED INDUVEICS			
MASTER IN PHYSICS Programme: MASTER IN PHYSICS YEAR V		SEMESTER X	
1 Togramme: WIAS	IER INTHIBICS	I EAIX V	PAPER III A
	Subject: Physics		<u> </u>
Course code	Course Title: Advance	ed Electronics-III	
	Course Outcomes:		
-	os the students to gain advanced concep		
•	action and microwave generation which h	as wide application	ons in modern
industry and Rese	earch.		
Credits: 4			Core
Max. Marks: 10	1		Compulsory Min.
External Exam:	75		Passing
Internal assessm			Marks: 36
Total No. of Lectur	res-Tutorials-Practical (in hours per week): 4-0-0)	Г
UNIT	TOPIC		No. of
UNII	TOFIC		Lectures
UNIT I	Power Supply Regulation		15
	Servomechanism, regulation using OA, Ze	ener reference	
	source, The 723 regulator current regulator.		
	and over load protection, Precision rectifier		
UNIT II	IC regulated power supply.	·	15
	Three terminal voltage regulations, dual	Polarity regulated	
	power supplies using 78 XX and 79 XX		
	(Basic ideas only). Switched mode power supply (SMPS),		
	Active filter, PLL		
UNIT III Microwave production		15	
	Limitation of convectional electronics	levices at UHF.	
	Microwave frequencies, Principle of velo	· · · · · · · · · · · · · · · · · · ·	
	Reflex klystron. Theory and uses an of	*	
	PIN & GUNN Diode, Detection of micro	•	
	measurement of power		
UNIT IV	Microwave Communication		15
	Advantages and Disadvantages of Microw	ave transmission	_
	loss in free space, propagation of microwa		
	effects on prorogation, Fresnel zone		
	reflection, antennas used in microwave co		
	system	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Suggested Readings:			
		crated Circuits	
Coughlin: Operational Amplifiers and Linear Integrated Circuits.			
	hilling & Belove: Electronic circuits Discrete an	d Integrated,	
Mcgraw Hill			
M	Millman & Halkias: Electronic Fundamentals & Applications, Tata		
M	illman &Halkias: Electronic Fundamentals & Ap	plications, Tata	

Mcgraw Hill	
Millman & Halkias: Integrated Electronics	
.R. Botkar: Integrated Circuits, Khanna Publishers	
V.K. Mithal& Ravi Mittal: Electronic Devices & Circuits, Khanna Publishers	
Malmstadt &Enke: Electronics for scientists	
Taub & Schilling: Principal of communication systems	
Simon Gayukti: Communication Systems	
Martin S. Roden: Analog & Digital Communication Systems	
Ferman: Electronic & Radio Engineering	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS		
Programme: MA	STER IN PHYSICS YEAR V	SEMESTER X PAPER III B
Course code	Course Title: Astrophys	sics-III
TD1:	Course Outcomes:	1:1 :11 1
-	vides the basic physical mechanisms about the solar activiti	_
_	in- Earth connection. This study provides the knowledge o	f Astroseismology
classification of	stars and the distribution in Galaxies.	
Credits: 4		Core Compulsory
Max. Marks: 1		Min. Passing
External Exam Internal assess		Marks: 36
	rures-Tutorials-Practical (in hours per week): 4-0-0	I
UNIT	TOPIC	No. of Lectures
UNIT I	Sun as a star : Solar spectrum, effective temperature,	15
	luminosity, photospheric absorption lines, limb	
	darkening; energy source: Kelvin time scale, nuclear	
	fusion; energy transport in the sun, Thomson	
	scattering, mean free path, photon diffusion inside the	
	Sun; photosphere, chromosphere, transition region,	
	corona.	
UNIT II	Quiet and Active Sun, Sunspots, their formation and	15
	magnetic field, Solar flares, Solar	
	filaments/prominences, Coronal mass ejections	
	(CMEs), Solar wind, Different type of solar eruptions	
	models, Coronal heating, Origin of solar cycle.	
UNIT III	General idea of Heliosesmology, Astroseismology,	15
	Description about p-mode and g-mode oscillations,	
	Introduction to variable stars and their locations in H-R	
	diagram. Classifications, Cephieds variables (classic	
	Cephieds and W Virginis stars), RR Lyrae stars, Mira	
	variables, Eruptive variables, Flare stars, Nebular	
	variables, Supernovae, roAP stars	
UNIT IV	The Milky way and Other Galaxies Distributions of	15
	stars in the Milky way, Morphology, Kinematics,	
	Interstellar medium, Galactic center. External galaxies,	
	Types of galaxies: spirals, ellipticals and irregulars,	
	Hubble classification for galaxies, 21cm line, rotation	
	cure, dark matter.	
•	Suggested Readings: Stix: The Sun: An Introduction	
,	Sun. The Sun. An introduction	
1	K. D. Abhyankar : Astrophysics: Stars and Galaxies	

T. Padmanabhan: Galaxies and Cosmology Motz: Astrophysics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS				
Programme: MASTER IN PHYSICS YEAR V SEMESTER X				
			PAPER III C	
Subject: Physics				
Course code Course Title: Hight Energy Physics-III			sics-III	
Course Outcomes:				

The course would provide the knowledge of advanced concepts of HEP. The students will be able to know the complicated theory of Relativistic propagators, S matrix expansion ans S matrix formulation of QED. It would open doors for the students who want to work in the field of HEP.

Credits: 4	Core Compulsory
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 36
Internal assessment: 25	

UNIT	TOPIC	No. of
LINIT	D. I. dinistic. Donoros dono. D. I. dinistic.	Lectures 15
UNIT I	Relativistic Propagators Relativistic propagators using	15
	quantized formulation of free fields, Properties of	
	quantized scalar fields(Real and complex cases), Algebra	
	of field operators, covariant form of the field operators	
	algebras, (Covariant commutation relations), Meson	
	propagator and its characteristics, Properties of quantized	
	spinor fields, Algebras of spinor field operator, Covariant	
	form of anti-commutation relations, Fermion propagator	
	and its characteristics, properties of quantized EM field,	
	Covariant commutation relations of EM field operators,	
	Photon propagator and its characteristics, EM interaction in	
	terms of radiation field and instantaneous coulomb fields.	
UNIT II	Operator Products, Feynman Propagators and S-matrix	15
	Expansion Various type of operator products (Normal,	
	Dyson products and Chronological T-products), Wick's	
	theorem, Feynman propagators and its physical	
	interpretation, Interacting fields, S-Matrix formulation as a	
	perturbative series solution of collision processes, Dyson	
	expansion of S-matrix.	
UNIT III	S-matrix Formulation of QED Interaction Hamiltonian in	15
	QED, Reduction of S-matrix for the case of QED,	
	Representation and description of various first and second	
	order processes in QED using S-matrix expansion.	
UNIT IV	Compton scattering, Moller scattering, Bhabha scattering,	15
	Electron self energy, Photon self energy, vacuum	
	configuration in QED, Feynman diagrams and Feynman	
	Rules in QED.	
	*	

Rv	Suggested Readings: vder : Quantum Field Theory	
	·	
B.K	K. Agarwal: Quantum Mechanics and Field Theory	
F M	Mandel and G. Shaw: Quantum Field Theory	
Ror	man: Quantum Field Theory	
A. I	Das: Quantum Field theory	
	E. Peskin, D.V. Schroeder: An Introduction to Quantum Field eory	
	Can be opted by	
Bac	chelor in Science with Physics as major subject	
S	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester IX with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Learn	ning - Massachusetts Institute of Technology,	
https://openlearnin	g.mit.edu/	
2. National Progra	mme on Technology Enhanced Learning (NPTEL),	
https://www.youtu	be.com/user/nptelhrd	
3. SwayamPrabha	- DTH Channel,	
https://www.swaya	amprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS			
Programme: MAS	TER IN PHYSICS YEAR V		MESTER X PER III D
	Subject: Physics		
Course code	Course Title: Spectroscopy-III		
T 41 4	Course Outcomes:		
	students would study the various types of lasers, Lase	_	
* *	in science and technology. Knowledge acquired by the	cours	se will be of
much use for vario	ous industries and R&D sector.		
Credits: 4		Co	
Max. Marks: 100	1		mpulsory in. Passing
External Exam: Internal assessm	75	M	arks: 33
	es-Tutorials-Practical (in hours per week): 4-0-0		
LINIUS	MONIC		NI C
UNIT	TOPIC		No. of Lectures
UNIT I	Molecular Symmetries and Group Theory Sym	metry	15
		metry	
	operation and point group, character table, Group t	•	
		•	
	representation of a group, reducible and irred		
	representations, LCAO coefficient of a polyatomic mol	ecuie,	
	Huckel approximation, overlap and resonance integrals,		
	Wheal's approximation.		
UNIT II	Mechanism of Fluorescence Emission and decay mechanism		15
	radiative & nonradiative processes, Jablonski diagram,		
	rule, Fluorescence lifetime and quantum yield, stoke	shift,	
	Mirror image rule, Oscillator strength, Fluores	cence	
	polarisation and Anisotropy, Time scale of molecular		
	processes in solution.		
UNIT III	Instrumentation for Fluorescence Spectroscopy Exc	tation	15
	and Emission spectra, An ideal spectrofluoro	meter	
	Distribution in Excitation & Emission spectra, Light so	irces,	
	Monochromator,		
UNIT IV	Optical filters, Photomultiplier tubes, Photon counting v	ersus	15
	Analog detection of Fluorescence Corrected Fluorescen		
	spectra, Measurement of Fluorescence lifetime		
	Suggested Readings:		
Ba	rrow G.M: Introduction to Molecular spectroscopy; Mcgra	wHill	
Не	erzberg G: Infrared and Raman Spectra of Polyatomic Mole	cules;	
Vo	on Nostrand Herzberg G: Spectra of Polyatomic Molecules;		

on Nostrand J. R. Lackowicz: Principle of Fluorescence

Spectroscopy King G: Molecular Spectroscopy	
King G.W: Spectroscopy and Molecular Structure	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: M	ASTER IN PHYSICS	YEAR V	SEMESTER X PAPER IV A
	Subject: Physics		
Course code	Course Title: Advance	ed Electronics-	[V
This source h	Course Outcomes:		and walking of
	nelps the students to gain basic ideas of the		_
	rices and circuits. The course includes the	•	
•	cuits and analog computation. The course is o	•	
	arn basics of digital electronics. The digital ele		
1 0 1	ocess control, signal processing, communicati	ion systems, d	igital instruments
etc.			
Credits: 4			Core
			Compulsory
Max. Marks: External Exa	100 m: 75		Min. Passing
Internal asses			Marks: 36
	ctures-Tutorials-Practical (in hours per week): 4-0-	0	
UNIT	TOPIC		No. of Lectures
UNIT I	Analog Computation		15
	Solution of ordinary linear differential equation		
	coefficients, Operation modes of analog com		
	operation of computers, Time scaling, amplitud		
UNIT II	Generation of functions, Simulation of time vary	ing systems.	15
UNITI	Boolean algebra Canonical forms of Boolean, functions, S	implification o	_
	Boolean functions (K-map, Tabulation meth	•	
	conditions. Digital logic families Digital to Anal		
	Digital converters.;	og and maiog to	'
UNIT III	Combinational Circuits		15
0111111	Adders & Subtractors, Magnitude comparator,	Code converters	
	Parallel adders, Encoders, Decoders,	Multiplexers	
	Demultiplexers, Parity bit generator and checker	-	
	memory (PROM, EPROM), P.L.A.	•	
UNIT IV	Sequential Circuits		15
	Sequential logic- Memory element, RS, JK, Jk	KMS, T type and	1
	Edge triggered Flip flop; Registers; Shift registers	ister; Counters-	-
	synchronous and Asynchronous; The	memory unit	;
	Semiconductor Random Access Memory; Inter	_	
	Arithmetic; Logic and Shift Micro-operation;	Fixed point and	
	floatation point data.		
	Suggested Readings:		
	Morris Mano: Digital Logic & Computer Design		
	Rajaraman: Introduction to Digital Computer des	ign	
	,	2	

Malvino& Leech Sloan: Computer Hardware & Organization

	Rajaraman: Analog Computation & Simulation Integrated reuits.		
	cgraw Hill		
	illman &Halkias: Electronic Fundamentals & Applications, Tata cgraw Hill		
M	illman &Halkias: Integrated Electronics		
K.	R. Botkar: Integrated Circuits, Khanna Publishers		
	K. Mithal& Ravi Mittal: Electronic Devices & Circuits, Khanna ıblisher		
Can be opted by			
Bachelor in Science with Physics as major subject			
Suggested Continuous Evaluation Methods:			
	Course Prerequisites		
	Passed Semester IX with Physics as major		
	Suggested Equivalent Online Courses:		
1. MIT Open Lea	1. MIT Open Learning - Massachusetts Institute of Technology,		
https://openlearni	https://openlearning.mit.edu/		
2. National Programme on Technology Enhanced Learning (NPTEL),			
https://www.youtube.com/user/nptelhrd			
3. SwayamPrabha	a - DTH Channel,		
https://www.sway	/amprabha.gov.in/index.php/program/current_he/8		

	MASTER IN PHYSICS			
Programme: N		SEMESTER X PAPER IV B		
	Subject: Physics			
Course code	Course Title: Astrophysics-IV			
This seems	Course Outcomes:	£t I		
	will provide the basic properties of stars, birth and the evolution			
	his, it provides the deep understanding about the star clusters and	their		
	g. luminosity and mass function, mass-luminosity relations etc.			
Credits: 4		Core		
Max. Marks		Compulsory Min. Passing		
External Ex	am: 75	Marks: 36		
Internal ass				
Total No. of L	ectures-Tutorials-Practical (in hours per week): 4-0-0			
LINIT	TOPIC	NI. C		
UNIT	TOPIC	No. of Lectures		
UNIT I	Basic Properties of Stars: Mass, radius, distance, luminosity			
	temperature, magnitude system, Wien-displacement color			
	indices, filters, H-R diagram, classification of stellar spectra,			
	_			
UNIT II	luminosity classification, stellar motion, stellar populations	<u>-</u> 15		
UNII II	Star Formation and Stellar Evolution: Birth of stars, protostar, Pro			
	main sequence evolution: Jeans instability, star formation,			
	Hayashi track, Zero age main sequence (ZAMS), Post-mai			
	sequence evolution: Core He burning, shell burning, red giant			
phase, planetary nebulae, white dwarf physics, electron degeneracy pressure, energy generation in stars – gravitational				
				contraction, pp chain, CNO cycle and triple alpha process, stella
	life, cycles-Premain sequence, main sequence, giants.			
UNIT III	Star Cluster and their Properties: Open clusters, globula	ır 15		
	clusters and the galaxy itself are examples of 'stellar systems'	· ;		
	crossing time; mean potential and total potential energy in	a		
	constant density sphere; equation of motion of N-body stella			
	system; total momentum, angular momentum and energy a			
	constants of motion, stellar population, population I and II typ			
	objects, inter-stellar extension, reddening determination from			
	color color diagram, age and distance determination of sta			
	clusters, luminosity function, mass function, mass segregation,			
HAHT IV	mass-luminosity relation.	1.5		
UNIT IV	Cosmological Models: Universe at large scales – Homogeneit	·		
	and isotropy – distance ladder – Newtonian cosmology			
	expansion and redshift - Cosmological Principle - Hubble's law			
	Robertson-Walker metric - Observable quantities - luminosit	у		
	and angular diameter distances - Horizon distance- Dynamics o	f		
	,			

Suggested Readings:	
Abhyankar K.D.: Astrophysics, Galaxies and Stars	
Vaidyanth Basu : An Introduction to Astrophysics	
Motz: Astrophysics	
Wotz : Astrophysics	
T. Padmanabhan: Stars and Stellar Systems	
L.W. d. A. d. and A.Dina in I.D. direction	
, , ,	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	
L Kutner: Astronomy: A Physical Perspective Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,	

MASTER IN PHYSICS			
Programme: MAS'	TER IN PHYSICS	YEAR V	SEMESTER X PAPER IV C
	Subject: Physics		
Course code	Course Title: High En	ergy Physics-IV	
The course woul	Course Outcomes: d provide the knowledge of some more ac	dvanced concent	s of HFP The
	be able to know the detailed theory of we	-	
interactions and st	•	ar meracions,	ciceti omagnetie
interactions and st	rong meraction.		
Credits: 4			Compulsory
Max. Marks: 100)		Compulsory Min. Passing
External Exam:			Marks: 36
Total No. of Lectur	res-Tutorials-Practical (in hours per week): 4-0-0		
Total 100. 01 Dectal	Tatoriais Fractical (in nours per week). 4-0-0		
UNIT	TOPIC		No. of
TINITE I		· · · · · · · · · · · · · · · · · · ·	Lectures
UNIT I	Theory of Weak Interactions Classification		15
	interaction in terms of Leptonic, Semi-lep		
	Leptonic weak Decays, Current-Current		
	VA theory, Intermediate Vector Boson	. ,	
	Conservation of Vector Current (CVC) H	• •	
	Component Theory of Neutrino, W and Z l	oosons as weak	
TINITE II	gauge bosons.		1.5
UNIT II	Theory of Electromagnetic Interactions El		15
	Annihilation into Hadrons, Electron- Nuc	•	
	Rutherford and Mott scattering, Electro	•	
	factors of Hadrons, Structure of nucleon Idea of Unification of Fundamental Intera	•	
	reference to standard model of electro weak		
UNIT III	Strong Interactions Paradoxes of Naive		15
OMIT III	Need of color quantum Number for Quark	,	
	and Gluons, Quantum Chromodynamics, P	, ,	
	Scattering,	1011-1 (4010011	
UNIT IV	Spin Classification of Hadrons and Reg	ge Traiectories	15
	Asymptotic freedom and Perturbative QCI	-	-
	indication for quarks and gluons, String mo	-	
	and confinement of Quarks.	IIIII	
	Suggested Readings:		
	Close: Quarks and Patrons I.J. Aitchison and A		
theories in Particle Physics F. Haltzin& A.D. Martin : Quarks and			
Leptons			
D.1	H. Perkins : Introduction of High Energy Physics	, Cambridge	
	iversity Press 2000	- -	

P.Cheng and G.LF Li: Gauge Field Theory ED Commins: Weak Interactions
D.C. Cheng and O Neil: Elementary Particle Physics
Can be opted by
Bachelor in Science with Physics as major subject
Suggested Continuous Evaluation Methods:
Course Prerequisites
Passed Semester IX with Physics as major
Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
3. SwayamPrabha - DTH Channel,
https://www.swayamprabha.gov.in/index.php/program/current_he/8

MASTER IN PHYSICS			
Programme: MAST		SEMESTER X PAPER IV D	
	Subject: Physics		
Course code	Course Title: Spectroscopy-IV		
	Course Outcomes:		
	students would study the various types of lasers, Laser sp	~ ~	
their applications	in science and technology. Knowledge acquired by the co	urse will be of	
much use for vario	us industries and R&D sector.		
Credits: 4		Core	
NA NA 1 100		Compulsory	
Max. Marks: 100 External Exam: 7 Internal assessme	15	Min. Passing Marks: 36	
Total No. of Lecture	s-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	TOPIC	No. of	
UNIT I	Ultrashort Pulses and Dynamics of Laser Processes	Lectures 15	
UNITI	•	13	
	Production of giant pulse, Q-switching by different types		
	of shutters, giant		
	pulse dynamics, laser amplifiers, mode locking, mode		
	pulling, ultra shot pulses, hole burning, holography		
UNIT II	Non-Linear Optics Harmonic generation, phase	15	
	matching, second harmonic generation, third harmonic		
	generation, optical mixing, parametric generation of light,		
	self focusing of light.		
UNIT III	Multi Photon Processes Multi quantum photoelectric	15	
	effect, two photon processes, frequency up-conversion.		
UNIT IV	Stimulated Raman effect, coherent stokes & anti-stokes	15	
	Raman scattering, photo acoustic spectroscopy		
I	Suggested Readings:		
D. I	Levenson: Introduction to non-linear laser spectroscopy		
B.Laud: Laser and non-linear optics			
velt	o: Lasers Demtroder: Laser Spectroscopy		
Bac			
S			
	Course Prerequisites		
Passed Semester IX with Physics as major			
	Suggested Equivalent Online Courses:		
1. MIT Open Lear	ning - Massachusetts Institute of Technology,		

https://openlearning.mit.edu/
2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

 $https://www.swayamprabha.gov.in/index.php/program/current_he/8$

MASTED IN DUVSICS			
MASTER IN PHYSICS Programme: MASTER IN PHYSICS YEAR V SE			SEMESTER X
Trogramm	. MASTER INTITIOES	LIMI	PRACTICAL
	Subject: Physics		1
Course cod	l	TICAL	
TT1 . 1	Course Outcomes:	. ,	C 1:CC . C 11 C
	nt will have adequate knowledge to perform the ex	-	of different fields of
	ith clear understanding of the theory behind the exper		
Student w	ill know about advanced experiments based on their	specializati	on paper.
Credits: 4			Core
N/I N/I	- 100		Compulsory
Max. Ma External			Min. Passing Marks: 36
	assessment: 25		Marks. 50
Total No. o	f Lectures-Tutorials-Practical (in hours per week): 0-0-4		
UNIT	ТОРІС		No. of Lectures
UNII	List of Experiments: (a) Advanced Electronics		No. of Lectures
	1. Study of regulated power supply (723).		
	2. Study of operational amplifier (741).		
	3. Study of Timer (555). 4. A to D and D to A cor	werter	
	5. 1 of 16 Decoder/Encoder	IV CITICI	
	6. Study of Multiplexer/Demultiplexer		
	7. Study of Viditiplexel/Definitiplexel 7. Study of Logic gates (Different types)		
	8. Study of Comparator and Decoder		
	9. Study of comparator and Decoder 9. Study of amplitude and frequency modulation	ong and	
	demodulations.	ons and	60
		Dir trung	т
	10. Study of different flip- flop circuits (RS, JK type, Master slave).	., DK type,	1-
		.:	
	11. Study of Digital combinational and sequential		
	12. Study of Microprocessor (8085) 13. Study of	CR, DIAC,	
	TRIAC		
	14. Study of IC- Based Power supply		
	15. Microwave experiment.		
	16. Shift Registers		
	17. Fiber Optics communication		
	List of Experiments: (b) Astrophysics		60
	1. Study of Hubble's law (from given data)		00
	, -		
	2. Study of constant density neutron star	or modal w	sith
	3. Study of the static parameters of a Neutron St	ai iiiouei W	1111
	inverse square density distribution		
	4. Study of star cluster from a given data		
	5. Study of Extinction coefficients		

6. Study of variability of stars	
List of Experiments: (c) High Energy Physics 1. Characteristic curve of a GM Detector and verifica inverse square law.	tion of 60
2. Characteristic curve of a GM Detector and Absocoefficient of a using aluminum GM Detector.	orption
3. Energy spectrum of gamma rays using gamma spectrometer.	ray
4. Absorption coefficient of aluminum using spectrometer.	gama-ray
5. Characteristics of Scintillation Detector.	
6. Study of gama-gama unperturbed angular correlation	ons.
7. Study of particle tracks using a Nuclear Emulsion I	Detector.
8. Classification of tracks in interaction with Nuclea and determination of excitation energy.	r Emulsion
List of Experiments: (b) Spectroscopy 1. Study of the vibrational levels of Iodine.	60
2. Measurement of the fluorescence spectra of Urany Hexahydrate.	l Nitrate
3. Determination of the intrinsic life time for a dye mo	olecule.
4. Determination of change in dipole moment in exusing Solvatochromic shift method.	xcited state
5. Measurement of non radiative decay rate for a know	vn sample.
6. Determination of the quantum yield of known sar	mples using
steady state spectroscopy.	
Can be opted by Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses: 1. Virtual Labs at Amrita Vishwa Vid https://vlab.amrita.edu/?sub=1&brch=74	yapeetham,
2. Digital Platforms /Web Links of other virtual labs may be added to this lists by individual Universities	suggested /
,	